分からない問題はここに書いてね440at MATH
分からない問題はここに書いてね440 - 暇つぶし2ch870:132人目の素数さん
18/02/15 03:31:29.01 tNBf7zgk.net
>>824
θ = 36゚ とおくと
0 = sin(3θ)- sin(2θ)
= 3sinθ -4(sinθ)^3 -2 sinθ cosθ
= -sinθ +4 sinθ (cosθ)^2 -2 sinθ cosθ
= sinθ {4(cosθ)^2 -2cosθ -1},
sinθ≠0 だから
4(cosθ)^2 -2cosθ -1 = 0,
cosθ = (1+√5)/4,
sinθ = √{(5-√5)/8},
a = 2sin(2θ) = √{(5+√5)/2},
あるいは
0 = cos(3θ)+ cos(2θ)
= 4(cosθ)^3 -3cosθ + 2(cosθ)^2 -1
=(cosθ+1){4(cosθ)^2 -2cosθ -1),
cosθ≠-1 だから
4(cosθ)^2 -2cosθ -1 = 0,
以下同様

871:132人目の素数さん
18/02/15 10:42:21.59 tSN0AO1A.net
CalcTape Free
URLリンク(www.vector.co.jp)
計算過程を確認でき、途中で修正することもできる電卓ソフト

872:132人目の素数さん
18/02/15 13:00:36.11 UgNb7y/z.net
>>843
ゴミソフト紹介されても…

873:132人目の素数さん
18/02/15 16:04:07.85 uoPhQNuf.net
記述のとき
導関数が0となるxを表記するときに
f'(x)=0 ⇔ x=2,3
みたいに、⇔の記号を書くのは間違ってないですか?

874:132人目の素数さん
18/02/15 16:44:28.18 OR8TaD39.net
はい

875:132人目の素数さん
18/02/15 22:28:28.11 UgNb7y/z.net
この問題が分かりません。球だと思うのですが、どう解いたら良いか分かりません
曲面上の任意の2点間の距離が2以下であるような閉曲面のうち、曲面積が最大であるものは何か。

876:132人目の素数さん
18/02/15 23:10:27.04 /4/K+H0+.net
>>847
距離というのが3次元ユークリッド距離のことなら、
球の表面をもっとぐねぐねさせれば表面積大きくならない?
絨毛 みたいに。
曲面上の測地線を考えてるなら話は別だね どっちだろう

877:132人目の素数さん
18/02/16 00:32:41.16 BWQkisCi.net
>>1
さあ、今日も1日がんばろう★☆
前スレ
分からない問題はここに書いてね439
スレリンク(math板)

878:132人目の素数さん
18/02/16 00:33:13.60 7BL9mIgD.net
>>2
x=-1で最小となりx=-3のときy=5、x=2のときy=15である2次関数の式を求めよ
教えて下さい

879:132人目の素数さん
18/02/16 00:33:47.03 AuwRGo0H.net
>>3
すれたてお疲れ様でした

880:132人目の素数さん
18/02/16 00:51:03.02 xXIgzvk8.net
>>850
y=ax^2+bx+c
y'=2ax+b
y''=2a
0=-2a+b
a>0
5=9a-3b+c
15=4a+2b+c
(-2,1,0)(a).(0)
(9,-3,1)(b)=(5)
(4,2,1)(c) (15)
|-2,1,0|
|9,-3,1


881:|=6+4+4-9=5 |4,2,1| a=(15-5)/5=2>0 b=(-10+30)/5=4 c=(90+20+20-135)/5=-1



882:132人目の素数さん
18/02/16 00:54:14.20 KqaRe5q9.net
f=e^(-x)sin(1/x) x>0
において次の条件2つをみたす定数aを求めよ
1つめ 任意のxにたいしてa>=f
2つめ ある数列xnがあって
f(xn)がaに収束する

883:132人目の素数さん
18/02/16 00:54:41.50 MAbnZfAt.net
(二次関数が-1で最小) ⇔ y=a(x+1)^2+b ∧ a>0 (下に凸)
4a+b=5 ∧ 9a+b=15 ⇔ a= , b=
これはa>0を満たしている
a,bくらいは自分で

884:132人目の素数さん
18/02/16 01:49:50.74 LmIoBxc5.net
>>853
1. f(x)< 1 = a,
2. n→∞ のとき
 x_n = 1/{(2n+1/2)π}→ 0,
 f(x_n)= e^(-x_n)→ 1.

885:132人目の素数さん
18/02/16 13:28:36.65 HF3ijfpe.net
全ての2次関数fは以下の性質を満たすことを示せ。ただしf'はfの導関数である。
-∞<ff'<∞

886:132人目の素数さん
18/02/16 13:33:05.00 VeI4C2Rx.net
パーw

887:132人目の素数さん
18/02/16 15:33:46.49 IxQut/js.net
m[0] , aj , bj は任意の自然数として
Σ{m[0] , j=0} (aj)*X^j = m[1]
Σ{m[1] , j=0}(bj)*X^j = m[2]
.
.
.
Σ{m[k] , j=0}(cj)*X^j = m[k+1]
としたとき、Xを超限順序数ωに変えたら不都合が生じますか?

888:132人目の素数さん
18/02/16 18:13:10.29 HF3ijfpe.net
超対称群ΩtはΩt≡Ωt-0を満たすか。

889:132人目の素数さん
18/02/16 19:27:13.31 yGgbizft.net
パーw

890:DJ学術 
18/02/16 20:02:27.53 yN3n4O8g.net
クラメールとかコンドラチェフとかがマイ作。
書くと変なずれが出るから、数式専用版とかアートシャイエンス数学版とかに
将来アップします。

891:132人目の素数さん
18/02/16 23:45:52.58 9Ya0AtFs.net
集合{1/n ; nは自然数}は0を含みますか?

892:132人目の素数さん
18/02/16 23:47:47.77 9Ya0AtFs.net
>>862
0=1/nとなる自然数nは存在しないので0は含まれないと思っているのですが大丈夫でしょうか?

893:132人目の素数さん
18/02/17 00:04:25.21 CFCM3pOk.net
>>863
それでよい

894:132人目の素数さん
18/02/17 00:44:38.38 jxTAJpLJ.net
先生から、実験して頂点Bが最も近くなるような領域を見つけてみなさいとヒントをもらいました。
その領域は立方体を合同な直方体に8分割したものの1つになるでしょうか?
(問題)
一辺の長さaの立方体Kの各面の重心を頂点とする正八面体Vがある。
Vの表面の点Pから最も遠いKの頂点をA、最も近いKの頂点をBと表す。このとき、積PA・PBの最大値とそれを与えるPの位置を求めよ。
ただしVの表面には、辺および頂点を含める。

895:132人目の素数さん
18/02/17 01:11:20.37 ZE5af5vu.net
>>865
適当にxyz空間に立方体を作ってみるといい
頂点を(±a/2,±a/2,±a/2)にとると、その「実験」は楽にできるかもしれない

896:132人目の素数さん
18/02/17 01:47:41.78 L9/4UcZM.net
総和の最大値に超限順序数を設定できますか?

897:132人目の素数さん
18/02/17 03:36:20.84 t4p1HKbt.net
>>865-866
PがVの1つの面、たとえば
x+y+z = a/2, x≧0,y≧0,z≧0


898: の上の点とすると、(*)より A(-a/2,-a/2,-a/2) B(a/2,a/2,a/2) PA^2 = PC^2 + CA^2, PB^2 = PC^2 + CB^2, ここに、C(a/6,a/6,a/6)は正三角形の重心 PC^2 が最大 ⇔ Pが頂点にある PA^2 ≦(0+a/2)^2 +(0+a/2)^2+(a/2+a/2)^2 = 3aa/2, PB^2 ≦(0-a/2)^2 +(0-a/2)^2 +(a/2-a/2)^2 = aa/2, PA・PB ≦(√3)aa/2, (*)P(x,y,z)とすると、 x>0 ⇔ |x-|s||<|x+|s|| ⇔ P-(|s|,t,u)< P-(-|s|,t,u) y>0 ⇔ |x-|t||<|y+|t|| ⇔ P-(s,|t|,u)< P-(s,-|t|,u) z>0 ⇔ |x-|u||<|z+|u|| ⇔ P-(s,t,|u|)< P-(s,t,-|u|)



899:132人目の素数さん
18/02/17 04:08:10.54 GsLmqle/.net
Aの触点全体をclAが閉集合であることの証明を教えて下さい

900:132人目の素数さん
18/02/17 06:44:19.24 X8wlggSq.net
1時間半ほど考えたけど解らんので教えてください。

直径5の円のなかに, 10個の点をどのようにとっても, 必ず互いの距離が2より小さい2個の点があることを証明せよ.

901:132人目の素数さん
18/02/17 07:24:18.00 I/6qdj3n.net
>>870
鳩の巣原理を使うのでは?

902:132人目の素数さん
18/02/17 07:47:09.67 X8wlggSq.net
その使い方がわからない…

903:132人目の素数さん
18/02/17 07:55:33.84 lNZT8YJU.net
ラーメン食べたい。

904:132人目の素数さん
18/02/17 07:56:12.18 lNZT8YJU.net
ラーメン食べたい。

905:132人目の素数さん
18/02/17 07:56:30.01 lNZT8YJU.net
ラーメン食べたい。

906:132人目の素数さん
18/02/17 07:56:49.11 lNZT8YJU.net
ラーメン食べたい。

907:132人目の素数さん
18/02/17 07:57:12.54 lNZT8YJU.net
ラーメン食べたい。

908:132人目の素数さん
18/02/17 07:57:30.10 lNZT8YJU.net
ラーメン食べたい。

909:132人目の素数さん
18/02/17 08:00:01.70 lNZT8YJU.net
ラーメン食べたい。

910:132人目の素数さん
18/02/17 08:00:20.31 lNZT8YJU.net
ラーメン食べたい。

911:132人目の素数さん
18/02/17 08:02:21.56 lNZT8YJU.net
ラーメン食べたい。

912:132人目の素数さん
18/02/17 08:02:45.87 lNZT8YJU.net
ラーメン食べたい。

913:132人目の素数さん
18/02/17 08:03:02.77 lNZT8YJU.net
ラーメン食べたい。

914:132人目の素数さん
18/02/17 08:03:23.04 lNZT8YJU.net
ラーメン食べたい。

915:132人目の素数さん
18/02/17 08:03:31.10 X8wlggSq.net
半径1の円を真ん中に描いて、その外側を8等分して円を9個の領域に分けるので合ってる?

916:132人目の素数さん
18/02/17 09:46:03.03 16pjJLK7.net
八等分した1ピース内の最大距離が2未満なのは綺麗に示せるの?

917:132人目の素数さん
18/02/17 09:57:52.15 16pjJLK7.net
半径2.5の円は半径1の円9つ(中心1つと外側8つ)で覆えるんじゃない?

918:132人目の素数さん
18/02/17 10:18:12.99 ZE5af5vu.net
円周上に7つまで点を置ける
円周上に7つ置くとあと1つしか置けない
9つを置く方法があるかわからない

919:132人目の素数さん
18/02/17 11:44:12.43 bLoXKua7.net
単位円より少し小さい円10個で半径2.5の円は覆える(9個では足りない)
URLリンク(www2.stetson.edu)
よって11個の点なら、ある2点間は2未満になる
10個の点なら実は配置できるんじゃないかなあ

920:132人目の素数さん
18/02/17 12:28:36.55 APQdN0L3.net
この解き方であっていますでしょうか?
(問題)
「A∪{B∩C}={A∪B}∩{A∪C}」を示せ
x∈A∪{B∩C}について
・x∈Aのときx∈A∪Bかつx∈A∪Cとなるのでx∈{A∪B}∩{A∪C}
・x∈{B∩C}のときも、x∈Bかつx∈Cからx∈A∪Bかつx∈A∪Cとなるのでx∈{A∪B}∩{A∪C}
よってA∪{B∩C}⊂{A∪B}∩{A∪C}
x∈{A∪B}∩{A∪C}についてx∈Aのときは自明なので、
・x∈Bのときにx∈{A∪B}∩{A∪C}となるにはx∈Cでなければならないのでx∈{B∩C}よりx∈A∪{B∩C}
よってA∪{B∩C}⊃{A∪B}∩{A∪C}
したがってA∪{B∩C}={A∪B}∩{A∪C}

921:132人目の素数さん
18/02/17 13:00:01.32 yPf15RxG.net
余弦定理使って少し考えれば直径が2以下であることはすぐ出る。

922:132人目の素数さん
18/02/17 13:04:51.32 ZE5af5vu.net
>>889
覆う問題と点を配置する問題は少し違うのでは

923:132人目の素数さん
18/02/17 13:29:45.11 uRXrO5L0.net
カメラで計算式を撮ると解答を教えてくれるアプリが発見される。試験中に知恵袋に書き込めるガバガバの京大入試はこれで数学満点だろ。 [524061638]
スレリンク(poverty板)

924:132人目の素数さん
18/02/17 13:32:06.98 f1AVQzS1.net
すいません。数学の初心者です。
4000回コイントスして、4000回中に15連続以上裏が続く確率の



925:ォ方と答えを教えて下さい。



926:132人目の素数さん
18/02/17 13:32:46.22 12Brn5VS.net
>>890
考え方はいいけど、説明を正確にしないと落第だぜ

927:132人目の素数さん
18/02/17 13:33:15.08 dmApQDVU.net
>>890
だいたいは良いと思うけど
下段の⊃を示すときの場合分けはxがAの元である場合とxがAの元でない場合にした方が良いと思う
x∈Bであればx∈Cでなければならないってことはないからね(x∈Bかつx∈Aのとき)

928:132人目の素数さん
18/02/17 13:35:00.64 yPf15RxG.net
八等分した一つに二点A,Bがあり円の中心をCとしたら
AC,BCを固定したときABが最大になるのはCが最大のとき。
あとは「定点と線分上の点の距離が最大になるのは点が線分の端にあるとき」を使えば
ABが最大になるのはA,Bが端にあるとき。
端と端の距離は
1.91341716182544885864229992015199と
1.92729501998714830332400615640264なので
直径は2未満。

929:132人目の素数さん
18/02/17 13:41:43.22 f1AVQzS1.net
>>894です。
ExcelやPythonなどを使っても構いません。
どなたか解き方を教えて下さいませ。m(_ _)m

930:132人目の素数さん
18/02/17 13:50:28.83 IFXeHL1T.net
多面体を使った球体の再現について質問があります
以下の条件で球体を作ろうと考えています
 ・出来るだけ一様な面を持つ
 ・出来るだけ多くの面を持つ
 ・出来るだけ多くの変を持つ面を使う
 ・最悪、極の部分は再現できなくても良い
必然フラーレンやサッカーボールのような形になりますが
 ・五角形と六角形を使った場合20面体以上は何面が作れるのでしょうか?
  (何種類あるかとか理論上の最大、計算方法とか知りたいです)
 ・一様な面を使って球状の正多面体(概ね100面以上 どんなに大きくても良い)を作る事は出来ないでしょうか?
  上述の通り極の部分は欠損しててもアリです

931:132人目の素数さん
18/02/17 14:03:03.88 APQdN0L3.net
>>895
レスありがとうございます。
正確に、とは自明とか書いちゃったところでしょうか?
もしお手数でなければどこが正確でないかご指南いただけると幸いです。
なにぶん独学でやっていまして雰囲気で解いてしまっていると思うので…
>>896
なるほど!確かに「x∈Aでない」がなければx∈Cである必要は無いですね。
つまりx∈{A∪B}∩{A∪C}でx∈Aでないときにx∈Bかつx∈Cとなる、ということであっていますでしょうか?
それからもうひとつ窺いたいのですが集合族について例えばG={{0, 1, 2}, {3, 4, 5}, {6, 7}}みたいな時にG⊃{0, 1}、G⊃0などは成り立つのでしょうか?

932:132人目の素数さん
18/02/17 14:07:37.19 APQdN0L3.net
900です。
間違えました。{0, 1}∈G、0∈Gでした。

933:132人目の素数さん
18/02/17 14:10:00.89 yPf15RxG.net
n回トスして15回連続裏が出ないで最後連続裏が出ている回数がm回である確率を漸化式を使って求める。

934:132人目の素数さん
18/02/17 14:48:19.54 ZepfIsNx.net
>>894
P[k]を(k+1)回目から(k+15)回目に最初の15回連続裏が現れる確率とする
全体の確率はP=Σ[j=0~3985]P[j]
1)P[0]は1回目から15回目までが表となる確率なのでP[0]=2^-15
2)1≦k≦15について、1回目から(k-1)回目には15回連続の裏は含まれることはない。
P[k]はk回目が表で、かつ(k+1)回目から(k+15)回目が裏となる確率なのでP[k]=2^-16
3)16≦k≦3985について P[k]は、1回目から(k-1)回目に15回連続の裏が含まれず、
k回目が表で、かつ(k+1)回目から(k+15)回目が裏となる確率なので、
P[k]=(1-Σ[j=0~k-16]P[j])(2^-16)
これらを元に計算するとP=0.0590367くらい

935:132人目の素数さん
18/02/17 15:11:41.21 f1AVQzS1.net
>>903
ありがとうございます。
大変勉強になりました。

936:132人目の素数さん
18/02/17 20:05:54.15 kZHesKGB.net
ゲーム作ってるんだけどキャラの縦と横の移動速度が同じ場合(それぞれ3とする)
3÷√2で斜め移動中の縦と横の速度を求められるのは知ってるけど(約2.121)
これが移動速度縦3横2での斜め移動といった場合にはどうすれば縦横それぞれの速度を求められますかね

937:132人目の素数さん
18/02/17 20:41:40.99 kZHesKGB.net
補足というか書き忘れだけど上のは斜め移動時に加速してしまうのを補正する計算です

938:132人目の素数さん
18/02/17 20:54:27.12 APQdN0L3.net
>>905
三平方の定理を用いてあげればいいと思います。
この場合であれば斜辺の長さ(速さ)が3になってかつ縦横の速さの比が3:2になればいいので
縦:3*3/sqrt(3^2+2^2)
横:3*2/sqrt(3^2+2^2)
になるかなと思います。sqrt(x)は平方根です。
ただ僭越ながら想像するにジョイパッドかなにかで全方向に自由に動くゲームを作られるのではないですか?
もしそうであればジョイパッドの傾いた方向の角度を用いて三角関数で速度を計算するのが良いのではないかと考えます。

939:132人目の素数さん
18/02/17 21:33:16.05 Ks/+Q+uY.net
>>893
>試験中に知恵袋に書き込めるガバガバの京大入試
なんじゃそれw

940:132人目の素数さん
18/02/17 21:44:45.74 Ks/+Q+uY.net
>>899
>・五角形と六角形を使った場合20面体以上は何面が作れるのでしょうか?
20面体

941:132人目の素数さん
18/02/17 21:46:35.06 kZHesKGB.net
>>907
縦:3*3/sqrt(3^2+2^2) → 9/sqrt(13) = 2.496~
横:3*2/sqrt(3^2+2^2) → 6/sqrt(13) = 1.664~
で合ってるでしょうか
斜辺の長さ3というのがどういう事なのかよく分からないのですが
ちなみに作っているのはアナログスティックで360度に動くようなのではなく
いわゆる十字キーでの古めかしい8方向移動タイプです

942:132人目の素数さん
18/02/17 22:06:28.45 APQdN0L3.net
>>910
すみません、不明確な表現でした。
いま、縦横3:2の速さで進む場合を考えていますね?
そうするとあるタイミングでは縦に3マス、横に2マス移動するわけです。
すると始めに居た位置からは斜めに移動しています。
今の縦横に移動した経路と実際に移動した斜め線を図に描きますと、直角三角形になります。
この斜辺の長さはある時間当たりに移動した距離ですので速度にあたるわけです。
いま問題にしているのはこの斜辺=速度を3に固定したい、ということでしたので上記の計算を行います。
アナログスティックですか!
そうしますとプレイヤーの直接入力で移動することを意図してはいないのですね。
RPG的なものを想像していたもので。

943:132人目の素数さん
18/02/17 22:25:11.65 kZHesKGB.net
>>911
速度を3に固定したいというのは縦横共に速度が3の時ですね
縦3横2の場合は理想の速度がいくつになるのか計算できていません
ただそのまま縦に3マス、横に2マス分動いたのでは「斜め移動の加速」が起きてしまいます
縦横同じ速度なら検索すれば例が見つかるのですが

944:132人目の素数さん
18/02/17 22:38:15.51 APQdN0L3.net
>>912
ごめんなさい、少しわからなくなりました…
いま考えられているのはどの方向にも同じ速さで進むための縦横の速度の計算、であっていますか?

945:132人目の素数さん
18/02/17 22:48:51.86 kZHesKGB.net
>>913
どの方向にも同じではないですね
縦が少し速くなると思います
知恵が無いなりに自分でも考えてみましたが>>910は合ってるような気がしてます

946:132人目の素数さん
18/02/17 23:01:34.73 APQdN0L3.net
>>914
すみませんが、もうひとつ
三平方の定理と速度ベクトルについてはご存知ですか?

947:132人目の素数さん
18/02/17 23:13:11.62 ZE5af5vu.net
>>905
数字でやると理解が遅くなりますので変数を使います
どのみちコーディングは変数をつかうのでしょうし
横X縦Yの比率で、速度Vでものを動かそうとする場合の、横方向の速度Vxと縦方向の速度をVyとすると、以下の式になります
Vx=V*X/√(X*X+Y*Y)
Vy=V*Y/√(X*X+Y*Y)
この√(X*X+Y*Y)は座標(0,0)から座標(X


948:,Y)までの距離を表す式となります。暗記しておいても損はありません



949:132人目の素数さん
18/02/17 23:16:54.12 kZHesKGB.net
>>915
三平方の定理はC^2 = A^2 + B^2というのですよね
ベクトルは関数で出してるのでよくわからないと思います
>>916
Vというのは移動量の多い方の値で良いのでしょうか

950:132人目の素数さん
18/02/17 23:25:42.99 APQdN0L3.net
>>917
三平方の定理はそれのことですが、速度の分解に用いることはご存知でしょうか?
もしその辺りが微妙であれば一度速度とベクトルについて勉強されることをおすすめします。
以下のページやそのもとのページなどは参考になるのではないかと思います。
物理のかぎしっぽ
URLリンク(hooktail.sub.jp)
ところで関数で出すとのことですが具体的にどんな計算をする関数なのでしょうか?
こちらは個人的な興味の質問です。

951:132人目の素数さん
18/02/17 23:39:47.54 kZHesKGB.net
>>918
リンク先を見て勉強しておきます
関数は座標x1,y1からx2,y2までの距離、角度を求めるものや
距離と角度からx成分y成分を取り出すもの等を使っています
移動量の多い方をAとして
A / (A^2 + B^2) = Q
Q * A = 速度①
Q * B = 速度②
これで求まりますでしょうか

952:132人目の素数さん
18/02/17 23:59:48.37 APQdN0L3.net
>>919
ちょっと惜しいです。
Q=V/sqrt(A^2+B^2)
速度①:Q*A
速度②:Q*B
このVは>>916さんのVと同じもので、移動速度の大きさを示すものです。

953:132人目の素数さん
18/02/18 00:07:45.35 ZjrR49kp.net
もし余裕があれば三角比、三角関数についても学びなおしてみると理解が深まるかもしれないです。
すみませんが、これで落ちさせてもらいます。
ゲーム製作、陰ながら応援しています。
頑張ってくださいね。

954:132人目の素数さん
18/02/18 00:12:27.87 nV09OLti.net
>>920
sqrtは書き忘れでした
縦横が異なる値だとVがいくつになるかわからないので
値の大きい方で割ってから掛ければA対Bの割合になると考えたのですがこれはやはり間違っているのでしょうか
縦横が同じ値ならVもその値にすればいいのですが

955:905
18/02/18 00:14:42.25 nV09OLti.net
要領を得ない質問にお付き合いいただき有難うございました
頂いたレスで掴めたものはあるのでもう少し頑張ってみます

956:924
18/02/18 01:45:07.98 R/sb9HRI.net
X=1/√3+√2の時X^4+1/X^4の値の求め方ってわかりますか?

957:132人目の素数さん
18/02/18 01:48:56.26 e4NqLH6n.net
>>870
 >>897>>886>>885>>871 で解決
なお、>>897
上は A,B共に半径R=2.5の円周上の端点の場合で
 2 R sin(π/8)= R √(2-√2)= 0.76536686 R = 1.91341716
下は 一方が半径R=2.5の円周上の端点、他方が単位円周上の端点の場合で
 √(1+RR-R√2)= 1.92729502
ですね。
>>887-889
 9つの単位円で覆うのは、チョト無理

958:132人目の素数さん
18/02/18 03:37:52.49 gU6NQ80Q.net
大学一年なんですが、工学部ではペアノの公理を学ばないですか?東大京大なら学びますか
数学科では学ぶと思いますが僕の行ってる大学では簡単な微積分と線形代数しか学びません
あとこれができたら線形代数だいたいマスターという問題ありますか?

959:132人目の素数さん
18/02/18 03:41:57.08 e4NqLH6n.net
>>924
1/X = √3 + √2,
X = √3 - √2,
より
1/X + X = 2√3,
1/X - X = 2√2,
辺々掛けて
1/XX - XX = 4√6,
1/X^4 + X^4 =(1/XX - XX)^2 + 2
=(4√6)^2 + 2
= 98,

960:132人目の素数さん
18/02/18 03:45:38.30 R/sb9HRI.net



961:>>927 わかりました。 ありがとうございました!



962:132人目の素数さん
18/02/18 04:03:08.15 1f3/Fjuc.net
アラン・コンヌさんは天才の中の天才ですか?

963:132人目の素数さん
18/02/18 04:47:08.04 QJPmXO6o.net
>>926
適当な3次正方行列のn乗を求める

964:132人目の素数さん
18/02/18 05:07:28.55 Oc6UNOb6.net
>>926
学ぶのは勝手にやることなので「そんなこと教えてもらえなかった!」というのはない考え方

965:132人目の素数さん
18/02/18 05:29:47.74 3fkTPBC0.net
>>909
わーおもしろーい
引き続き宜しくお願いします

966:132人目の素数さん
18/02/18 08:59:29.73 qShdtbzi.net
(イ)の方です。
一番最後で
1/c≧1/d だと言うことはできますか??
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)

967:132人目の素数さん
18/02/18 09:40:44.21 pl5yPBEk.net
>>933
y=logxの凸性に言及してなくない?
凸性に言及すればその不等式を示すことが可能
具体的にはf''を求めて凸性について述べ、そこから平均変化率がどんどん小さくなる、と記述すればいい
高校数学だしこの程度の記述で許されると思う

968:132人目の素数さん
18/02/18 10:24:14.86 qShdtbzi.net
>>934
やっぱり不可能ですよね...。
わざわざ中間値使わなくても両辺ともlogx上の2点の傾きを表してるのでそこに触れて証明した方が良いのですかね?

969:132人目の素数さん
18/02/18 13:44:36.72 qShdtbzi.net
連続ですいません
何からしていいかよく分からなくて詰まっています。教えて頂けるとありがたいです。
原点中心に回転していくから
戦略としては極座標ですかね?
dx/dtとdy/dtから増減表かいて概形もとめるグラフにか困れた扇形みたいな図形と三角形にわかれる。なので場合わけ
扇形みたいな図形は
∫ydxでこのあとtで微分するからd{∫[0→x]f(t)dt}/dx=f(x)使う。
U(n)は導関数を積分して求めて、あとは極限ですか?
URLリンク(i.imgur.com)

970:132人目の素数さん
18/02/18 15:57:55.91 0716RcaA.net
極座標の面積公式
URLリンク(mathtrain.jp)

971:132人目の素数さん
18/02/18 20:12:19.60 s7QIR4Au.net
2次の多項式f(x)が
 任意の自然数nに対してf(n)がn(n+1)で割り切れる
を満たすとき、f(x)は多項式としてx(x+1)で割り切れるといえますか

972:132人目の素数さん
18/02/18 20:38:56.81 NiOyzqDQ.net
いえそうです

973:132人目の素数さん
18/02/18 20:46:57.27 9O/v+nfX.net
f(x)を具体的に書き出せるんだから書いてみよう

974:132人目の素数さん
18/02/18 21:52:05.89 r36RT/qX.net
といて欲しい証明の問題があります
「集合AをA={K(n)|K(n)は1を除く奇数である}と定める。
また、集合Aの要素は全て異なるものとする。
この時
(3+1/K(n))を任意の回数かけた値、
すなわちその値をXの式で
X=(3+1/K(1))*(3+1/K(2))*........と表す時
Xが、かけた回数やK(n)の値が任意かつ有限なもので自然数になることはない」
というものです
よろしくお願いします

975:132人目の素数さん
18/02/18 21:53:30.73 hJBbLdKR.net
f(x)=ax(x+1)+bx+cとする。
f(n)/n(n+1)=a+(bn+c)/n(n+1)で
lim(bn+c)/n(n+1)→0(n→∞)より
b,cが0でないならば
十分大きい整数nで条件を満たさない
よってb=c=0より示せた
どない?

976:132人目の素数さん
18/02/18 23:02:05.27 gINNEtP1.net
>>941
文章書き直し

977:132人目の素数さん
18/02/18 23:03:53.94 gINNEtP1.net
このスレで解かれずに残ってる問題一覧: <


978:132人目の素数さん
18/02/18 23:13:28.36 5M24+335.net
どれもこれも全然ダメじゃん。

979:132人目の素数さん
18/02/18 23:15:29.83 F58eyW5n.net
感情の原因はそれを感じる者自身の固定観念・価値観・自己ルール
「言葉 風紀 世相の乱れ」はそう感じる人の心の乱れの自己投影
解釈(含む誤解)の原因は情報発信者ではなく受信者
問題解決力の低い者ほど自己防衛の為に礼儀作法やマナーを要求
憤怒は狂気、無知無能の自己証明。中途半端な知識主ほど辛辣に批判
「真実は一つ」は錯誤。執着する者ほど矛盾を体験(争い煩悩)
無自覚な傲慢者に多い「己の知見こそ全で真」も錯誤。独善の典型
論理的思考力の低い者ほどデマ宗教フェイク迷信に感化傾倒陶酔洗脳
史上最も売れているトンデモ本は聖書。神は人間の創造物
全ては必然。偶然 奇跡 理不尽 不条理は思考停止 視野狭窄の産物
人生 存在に元々 意味 価値 理由 目的 義務 使命はない
宗教民族領土貧困は争いの原因ではなく「理由口実動機言訳切欠」
社会問題の根本原因は低水準教育。必要なのは適切十分な高度教育
体罰は指導力・問題解決力の乏しい教育素人の独善甘え怠慢責任転嫁
死刑は民度の低い排他的集団リンチ殺人。「死ねば償える」は偽善
核武装論は人間不信と劣等感に苛まれた臆病な外交素人の精神安定剤
投票率低下は社会成熟の徴候。奇人変人の当選は議員数過多の証左
感情自己責任論 ~学校では教えない合理主義哲学~ m9`・ω・)

980:132人目の素数さん
18/02/18 23:25:31.11 hJBbLdKR.net
>>943
どこがだめなん?なんかルールあったっけ?

981:132人目の素数さん
18/02/18 23:30:01.48 dSxwtxgZ.net
集合じゃないものを集合というな
(3+1/83)(3+1/55)(3+1/29)(3+1/25)(3+1/19)=256.

982:132人目の素数さん
18/02/18 23:55:42.70 e4NqLH6n.net
>>887 >>889
n枚の単位円板で覆うことのできる円の半径 R_n は↓らしい。
n, R_n, 単位円板(中心)の配置
-----------------------------------------
1, 1,
2, 1,
3, 2/√3 = 1.15470 , 正3角形(辺長 √3)
4, √2 = 1.41421 , 正方形(辺長 √2)
5, 1.641004464 , 5角形 Kroly Bezdek (1983)
6, 1.798869 , 6角形 Karoly Bezdek (1979)
7~10, 1+2cos(2π/(n-1)), 原点O と 正(n-1)角形(辺長 2sin(2π/n))
7, 1+2cos(π/3)= 2 ,
8, 1+2cos(2π/7)= 2.24698 , , Gabor Fejes Toth (1996)
9, 1+2cos(π/4)= 1+√2 = 2.41421, , Gabor Fejes Toth (1996)
10, 1+2cos(2π/9)= 2.53209 , , D. Nagy (1974)
11, 2.63100 , (内) 2つ と(外)9角形, Hars Melissen (1997)
12, 2.76900 , (内) 正3角形 と(外)9角形, Hans Melissen (1997)
URLリンク(ja.wikipedia.org)円板被覆問題
URLリンク(mathworld.wolfram.com)


983:iskCoveringProblem.html http://www2.stetson.edu/~efriedma/circovcir/



984:132人目の素数さん
18/02/18 23:57:37.00 hJBbLdKR.net
>>948
どーやって見つけたん?

985:132人目の素数さん
18/02/19 00:03:10.80 t//2lb1b.net
ラマヌジャンかな?

986:132人目の素数さん
18/02/19 00:08:53.60 VF4EpRLf.net
プログラムぶん回したか

987:132人目の素数さん
18/02/19 00:21:09.88 KkZd2DJX.net
>>942
aが整数であることを補足すればOK

988:132人目の素数さん
18/02/19 00:23:51.70 ar7lPSMz.net
>>953
こんなかんじの問題京大の問題にあったよな

989:132人目の素数さん
18/02/19 00:25:07.21 kgsz5ltG.net
>>948ありがとうございます!

990:132人目の素数さん
18/02/19 00:26:58.88 ar7lPSMz.net
あれID変わってるゾ

991:132人目の素数さん
18/02/19 00:27:27.07 /8jC6j7+.net
>>948 >>950
コラッツ(角谷)の問題(予想)ですね。
55→83→125
25→19→29→11
より
125|55(3+1/55)(3+1/83)
11|25(3+1/25)(3+1/19)(3+1/29)
辺々掛ける。

992:132人目の素数さん
18/02/19 00:27:27.20 ar7lPSMz.net
日替わりなんかな

993:132人目の素数さん
18/02/19 00:30:54.38 LXKSoPV8.net
老オカマの「阪京」(ハゲキモ)とかいうヤツは
まだ生き恥をさらしているのか?
実際に妻子あるいは親戚がいるのか?
もしもいるとしたら、阪京が家族に隠れて他人の男性器を
しゃぶったり、ケツボボを掘って貰いたがったりしている事を
どう思ってるんだろう?
それともナタが怖くて近寄らないのか?

994:132人目の素数さん
18/02/19 00:35:48.19 ar7lPSMz.net
うぴー

995:132人目の素数さん
18/02/19 00:36:18.12 ar7lPSMz.net
うぴぴー

996:132人目の素数さん
18/02/19 11:12:57.47 OuIuY8Mw.net
質問があります。
当選確率40%のくじを7回引いて全部外れる確率は何%ですか?
計算式も教えて下さい。
よろしくお願いします。

997:132人目の素数さん
18/02/19 11:21:44.66 sUgpud4p.net
>>962
1回引いて外れる確率の7乗

998:132人目の素数さん
18/02/19 11:37:28.25 OuIuY8Mw.net
963さんへ
どうもありがとうございます

999:132人目の素数さん
18/02/19 14:20:00.30 FejsIOhD.net
>>926
講義で扱ったとしても、こんなのがあると紹介する程度でしょうね。
工学部の数学で基礎論に深入りすることは、ないだろうと思います。
自分で図書館の本を読めば済む話ではないですか?
将来仕事に使うことはまずない事項なので、
教わらないことを不安がる必死はないでしょう。

1000:132人目の素数さん
18/02/19 15:10:39.00 ZUVW5CIQ.net
おらの高校の算数の最初の授業が、ペアノの公理だったな。それから、関東の集合論で対角線論法。センセの趣味を押し付けられた感じだけど、きっちり理解できたぞ

1001:132人目の素数さん
18/02/19 15:15:17.79 ecDxjMH2.net
よかったな、ふあああ

1002:132人目の素数さん
18/02/19 15:36:32.24 84K17tgR.net
集合族について質問です。
C={{1, 2, 3, 4, 5}, {3, 4, 5, 6}, {3}, {2, 9}}みたいなときに{1, 2, 3}∈Cや3∈C、9∈Cなどは成り立つのでしょうか?

1003:132人目の素数さん
18/02/19 15:41:14.40 fngSh02B.net
成り立ちません

1004:132人目の素数さん
18/02/19 15:54:48.28 84K17tgR.net
>>969
ありがとうございます。
とするとX={1, 2, 3}としたときにG={φ, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}は加法族になって
G'={φ,{1, 2, 3}}では加法族にならないと思うのですが、この認識は正しいでしょうか?

1005:132人目の素数さん
18/02/19 16:02:23.25 fngSh02B.net
>>970
G'も加法族ですよ

1006:132人目の素数さん
18/02/19 16:09:03.42 84K17tgR.net
>>971
立て続けに質問してすみませんが、G'では加法族の条件
あるA⊂XでA⊂G'となるときX-A⊂G'が成り立たないような気がするのですが…
すみませんがご教示願えないでしょうか?

1007:132人目の素数さん
18/02/19 16:11:01.57 fngSh02B.net
⊂じゃなくて


1008:∈ですよ



1009:132人目の素数さん
18/02/19 16:14:01.36 84K17tgR.net
すみません、冷静に眺めていたら普通に成り立っていますね。
φ⊂Xでφ⊂G'に対しては{1, 2, 3}⊂G'ですし
{1, 2, 3}⊂Xで{1, 2, 3}⊂G'に対してはφ⊂G'になりますね。
集合族中の要素の部分集合も集合族の要素となりえると勘違いしていたのがまだ残っていたようです…
お騒がせしました。
しつこいようですがつまりはG''={φ, {1, 2, 3}, {1, 2}}みたいな場合では加法族にならないのですね?

1010:132人目の素数さん
18/02/19 16:15:13.60 fngSh02B.net
そうですね

1011:132人目の素数さん
18/02/19 16:17:55.57 84K17tgR.net
>>975
ありがとうございました。
ここ最近のもやもやが晴れました。
あと記号の間違いについてもご指摘ありがとうございます。

1012:132人目の素数さん
18/02/19 17:22:58.78 d9u9RHnn.net
このようにドーナツ型の図があり、外側の円(以下、外円)と内側の円(以下、内円)は対応して動くとして
2つの円周には一回しか塗れないインクがついてるとします
2つの円を右に回転させたとき外円の接地面にはインクが全てつくと思いますが、
内円の接地面にはどのようにインクがつきますか?
中学生の頃からの疑問なのですがどうしてもわからないので、教えてください

URLリンク(i.imgur.com)

1013:132人目の素数さん
18/02/19 18:01:05.96 v14nFkWY.net
風と熱の違いってなんですか?
大学の説明会で教授に聞いたのですがテンソルが関係あると言っていました
よく分からなかったのでここで聞いてみたいと思います

1014:132人目の素数さん
18/02/19 18:04:06.53 CMze8r9t.net
風って高気圧から低気圧に空気が流れるってことだろ?
詳しいことは物理か気象板で聞いたら?

1015:132人目の素数さん
18/02/19 18:21:39.63 81kkMp/Q.net
わかりました
ありがとうございます!

1016:132人目の素数さん
18/02/19 19:23:01.34 nk+ysyni.net
風邪は熱です

1017:132人目の素数さん
18/02/19 21:53:59.41 lqyOSah5.net
一理ある

1018:132人目の素数さん
18/02/19 21:58:20.15 lqyOSah5.net
>>977
内側の円が描く線も、外側と同じ長さになる
円周の長さは関係ない

1019:132人目の素数さん
18/02/19 23:30:21.50 P8BlS767.net
分からない問題はここに書いてね441
スレリンク(math板)

1020:132人目の素数さん
18/02/19 23:54:48.58 VF4EpRLf.net
ペアノ曲線の方が面白くない?

1021:132人目の素数さん
18/02/20 10:06:15.42 pKmS4RVd.net
ヤマハかスタインウェイか?

1022:132人目の素数さん
18/02/20 14:45:13.72 9vWhVGGm.net
正多面体の図形的性質がよく載っている本を教えていただけませんか
具体的には、体積や表面積の求め方、色々な切断面の形、いくつかの頂点を結んでできる立体の種類、を知りたいです

1023:132人目の素数さん
18/02/20 15:14:50.61 On6l/zjh.net
「母数」「母集団」「分母」の違い、理解してるモメン少なそう [871635759]
スレリンク(poverty板)

1024:132人目の素数さん
18/02/20 15:22:27.92 Y1aF8iKv.net
ペアノ曲線か、懐かしいのう。おらが中学の時、ペアノ曲線をモチーフにデザイン画書いたが、美術のセンセには不評だった。ぐすん

1025:132人目の素数さん
18/02/20 15:49:49.12 auwC5qzE.net
>>948
>>957
よく思いつくねえ。アタマのデキが違うね

1026:132人目の素数さん
18/02/20 16:23:29.03 9j8CF7C+.net
んだんだ

1027:132人目の素数さん
18/02/20 17:35:19.98 EOygyEge.net
>>989
音楽の先生なら、わかってくれたかも。

1028:132人目の素数さん
18/02/21 03:04:10.53 xFlMdI8t.net
>>989
大和絵・錦絵の「すやり霞」なんかに応用できそうですが…
書道の先生なら、わかってくれるでしょう。

1029:132人目の素数さん
18/02/21 13:17:39.91 1ldTuTjf.net
ペアノ曲線は単調だからドラゴン曲線がいいんじゃない?

1030:132人目の素数さん
18/02/21 14:39:04.47 1qHQN80c.net
空間充填曲線
空間恐怖
饕餮紋
メイズ
ラビリンス

1031:132人目の素数さん
18/02/21 15:18:57.83 Kk32RnsU.net
この問題で、四面体が動く領域をxy平面に平行な面で切って捉え、積分して体積を求めようとしているのですが、切断面の概形がつかめずうまくいきません。ご教授ください。
一辺の長さが1の正四面体OABCがある。ただしOは座標空間の原点とする。
底面ABCの重心をG(p,q,r)とし、p≥q≥r≥0を満たす範囲でGを動かすとき、この正四面体(内部を含む)が通過してできる領域の体積を求めよ。

1032:132人目の素数さん
18/02/21 16:53:12.70 JFIkQrIb.net
>>996
Gを固定しても四面体の向きが決まらないけど、それはどうするの?

1033:132人目の素数さん
18/02/21 17:35:25.08 0jBhw946.net
全ての向きをとりうるんでしょ

1034:132人目の素数さん
18/02/21 18:24:09.62 Kk32RnsU.net
>>998
その意味だと思います。問題文はこれだけです。

1035:132人目の素数さん
18/02/21 18:40:46.94 JFIkQrIb.net
>>996
(1/2)πsrの球面三角形と、それに隣接するはみ出た部分の面積を、辺と角の2種類に分けて評価するといいんじゃないかな

1036:1001
Over 1000 Thread.net
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 32日 5時間 3分 41秒

1037:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています


最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch