暇つぶし2chat MATH
- 暇つぶし2ch98:現代数学の系譜 雑談 古典ガロア理論も読む
18/01/01 23:34:23.48 dCRrvhl7.net
(参考)
URLリンク(ja.wikipedia.org)
リウヴィル数
URLリンク(en.wikipedia.org)
(抜粋)
Structure of the set of Liouville numbers[edit]
For each positive integer n, set
U_n=∪_q=2~∞ ∪_p= -∞ ~∞ {x∈ R :0<|x - p/q|< 1/q^n} =∪_q=2~∞ ∪_p= -∞~∞ ( p/q - 1/q^n, p/q+ 1/q^n)\ { p/q}
The set of all Liouville numbers can thus be written as
L=∩_n=1~∞ U_n.
Each Un is an open set; as its closure contains all rationals (the p/q's from each punctured interval), it is also a dense subset of real line. Since it is the intersection of countably many such open dense sets, L is comeagre, that is to say, it is a dense Gδ set.
Along with the above remarks about measure, it shows that the set of Liouville numbers and its complement decompose the reals into two sets, one of which is meagre, and the other of Lebesgue measure zero.
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch