暇つぶし2chat MATH
- 暇つぶし2ch82:現代数学の系譜 雑談 古典ガロア理論も読む
18/01/01 17:14:45.77 dCRrvhl7.net
>>77 つづき
URLリンク(en.wikipedia.org)
σ-ideal Sigma-ideal (Redirected from Σ-ideal)
(抜粋)
In mathematics, particularly measure theory, a σ-ideal of a sigma-algebra (σ, read "sigma," means countable in this context) is a subset with certain desirable closure properties. It is a special type of ideal. Its most frequent application is perhaps in probability theory.
Let (X,Σ) be a measurable space (meaning Σ is a σ-algebra of subsets of X). A subset N of Σ is a σ-ideal if the following properties are satisfied:
(i) O ∈ N;
(ii) When A ∈ N and B ∈ Σ , B ⊆ A ⇒ B ∈ N;
(iii) {A_n}_{n∈N }⊆ N→ ∪ _{n∈N }A_n∈ N.
Briefly, a sigma-ideal must contain the empty set and contain subsets and countable unions of its elements. The concept of σ-ideal is dual to that of a countably complete (σ-) filter.
If a measure μ is given on (X,Σ), the set of μ-negligible sets (S ∈ Σ such that μ(S) = 0) is a σ-ideal.
The notion can be generalized to preorders (P,?,0) with a bottom element 0 as follows: I is a σ-ideal of P just when
(i') 0 ∈ I,
(ii') x ? y & y ∈ I ⇒ x ∈ I, and
(iii') given a family xn ∈ I (n ∈ N), there is y ∈ I such that xn ? y for each n
Thus I contains the bottom element, is downward closed, and is closed under countable suprema (which must exist). It is natural in this context to ask that P itself have countable suprema.
A σ-ideal of a set X is a σ-ideal of the power set of X. That is, when no σ-algebra is specified, then one simply takes the full power set of the underlying set. For example, the meager subsets of a topological space are those in the σ-ideal generated by the collection of closed subsets with empty interior.
(引用終り)
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch