18/01/01 17:07:53.69 dCRrvhl7.net
で、勝手ながら、年末年始に読んだ関連を貼るよ(^^
まず、関連参考:検索でヒットしたので貼る。
BaireCategory.pdfの”3. Pointwise limits of continuous functions.”に、「422に書いた定理」の関連記述
「Theorem. If f : R → R is a pointwise limit of continuous functions,
then Df is Fσ meager (that is, a countable union of closed sets with empty interior).
(In particular, by Baire's theorem, f is continuous on a dense subset of R.)」とあり(当たり前か? (^^ )
URLリンク(www.math.utk.edu)
MATH 447- Advanced Calculus I- Fall 2016- A. FREIRE
(or: ANALYSIS IN R^n)
(抜粋)
URLリンク(www.math.utk.edu)
Sets of discontinuity and Baire's theorem Baire Category Notes (5 problems) (the problems are HW8, due Friday 11/4)A. FREIRE 2016
(抜粋)
1. Sets of discontinuity. For f : R → R, we define
Df = {x ∈ R; f is not continuous at xg:
3. Pointwise limits of continuous functions.
Theorem. If f : R → R is a pointwise limit of continuous functions,
then Df is Fσ meager (that is, a countable union of closed sets with empty interior).
(In particular, by Baire's theorem, f is continuous on a dense subset of R.)
Proof. We know Df = ∪ n>=1 D1/n (see Section 1), so it suffices to show
that the closed sets Dε have empty interior, for any ε > 0.
By contradiction, suppose Dε contains an open interval I.
We'll find an open interval J ⊂ I disjoint from Dε!
Let fn → f pointwise on R, with each fn : R → R continuous.
For each N >= 1, consider the set:
CN = {x ∈ I; (∀m, n >= N)|fm(x) - fn(x)| <= ε/3}.
Clearly ∪ N>=1 CN = I (by pointwise convergence). QED
(引用終り)
つづく