暇つぶし2chat MATH
- 暇つぶし2ch630:現代数学の系譜 雑談 古典ガロア理論も読む
18/01/18 23:11:47.44 gGT+ehE7.net
>>570 補足
Swinnerton-Dyerさんが出てくるね(^^
URLリンク(en.wikipedia.org)
Littlewood conjecture
(抜粋)
Connection to further conjectures[edit]
It is known that this would follow from a result in the geometry of numbers, about the minimum on a non-zero lattice point of a product of three linear forms in three real variables: the implication was shown in 1955 by J. W. S. Cassels and Swinnerton-Dyer.[1]
This can be formulated another way, in group-theoretic terms. There is now another conjecture, expected to hold for n ? 3: it is stated in terms of G = SLn(R), Γ = SLn(Z), and the subgroup D of diagonal matrices in G.
Conjecture: for any g in G/Γ such that Dg is relatively compact (in G/Γ), then Dg is closed.
This in turn is a special case of a general conjecture of Margulis on Lie groups.
(引用終り)
URLリンク(en.wikipedia.org)
Peter Swinnerton-Dyer
(抜粋)
Sir Henry Peter Francis Swinnerton-Dyer, 16th Baronet KBE FRS (born 2 August 1927), commonly known as Peter Swinnerton-Dyer, is an English mathematician specialising in number theory at University of Cambridge.
As a mathematician he is best known for his part in the Birch and Swinnerton-Dyer conjecture relating algebraic properties of elliptic curves to special values of L-functions, which was developed with Bryan Birch during the first half of the 1960s with the help of machine computation, and for his work on the Titan operating system.
(引用終り)
URLリンク(en.wikipedia.org)
Birch and Swinnerton-Dyer conjecture


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch