18/01/14 19:16:07.18 fNVDpqMq.net
>>498
>読む価値のある名著と思えば、繰り返し読むとかの方が良いだろう
”ディリクレは、D. A. を常に携帯していたという[6]。”
プロ数学者でも、そういう例はある
まあ、1回だけでは汲み尽くせない
名著は何度も読むべしかな
URLリンク(ja.wikipedia.org)
Disquisitiones Arithmeticae
(抜粋)
ディリクレは、D. A. を常に携帯していたという[6]。
ガウスは D. A. に多くの付記を残し、彼自身のさらなる研究の一助とした。同世代の者には謎めいているものもあったが、一部は例えば、今日ではL関数や虚数乗法と呼ばれるものの萌芽であったと解釈される。
D. A. の内容は、20世紀以降の数学研究においても新鮮さを失っていない。例えば、第5章第303条は虚二次体の類数の具体的な計算についての要約である。
ガウスは、任意の正整数 n に対して類数が n である虚二次体は有限個しか存在しないであろうと予想し、類数の小さな虚二次体は全て決定したと信じた。
この予想は、1934年にハンス・ハイルブロン(英語版)が解決した[7]。類数1の虚二次体を全て決定する問題は、1966年のアラン・ベイカーと1967年のハロルド・ミード・スターク(英語版)によって独立に解かれた[8]。2004年までに、類数が100以下の虚二次体は全て決定されている[9]。
また、第7章第358条は、有限体上の楕円曲線の点の個数に関する、ハッセの定理の評価が非自明に成り立つ(歴史的に)最初の例を与えている[10]。この定理は、ヘルムート・ハッセが1933年に証明し、アンドレ・ヴェイユらによって一般化されるが、適切に言い換えることによって、リーマン予想の類似と見なせることが知られている[11]。
(引用終り)