暇つぶし2chat MATH
- 暇つぶし2ch53:132人目の素数さん
17/12/29 00:47:07.18 gcYWyS10.net
>>44
>ならば、c = x-1/M 、d = x+1/M として、ある区間(c, d)と書けるだろ?
>定理1.7の証明は、それで終りでは?
息をするように間違えるゴミクズ。ぜんぜん終わらないよ。
なぜなら、その pdf の(1)の部分では「x」が固定されていて、動かせるのは y だけだからだ。
もし、お前が言うように c, d を定義したとしても、(1)で言えているのは
∀y∈(c, d) [ |f(y) - f(x)| <= N|y - x| ]
ということに過ぎず、y しか動かせていない。一方で、f が(c,d)上でリプシッツ連続であるためには、
∀y,z∈(c, d) [ |f(y) - f(z)| <= N |y - z| ]
が言えなければならない。しかし、補題1.5の条件だけでは、ここまで強いことは言えない。
あるいは、別の言い方をすると、次のように言ってもよい。まず、
f(x)= 0 (x=0), x^{3/2}sin(1/x) (x≠0)
という例の関数を考える。すると、|Af(0)|=|f '(0)|=0<+∞ だから、この f と x=0 に対して補題1.5 の議論が使える。
すると、そのまま(1)のところまで来たとき、もしスレ主の言い分が正しいなら、「それで終わり」となり、
この f は原点の近傍でリプシッツ連続ということになるが、実際にはそんなことは無いだろ?
つまり、スレ主の言い分は自動的に間違ってるということ。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch