18/01/14 14:07:41.58 fNVDpqMq.net
>>468 補足
>「h:無限次元ベクトル空間R^N→N’(決定番号の集合)」で、x,y∈N’で、P(x>y)=1/2 がきちんと計量を定義して言えるのか?
ここを細分すると
R^N:無限次元ベクトル空間 s∈R^N s=(s1,s2,s3,・・・)
↓
R^N/~(商射影の切断)(URLリンク(ja.wikipedia.org) 商写像 )
↓
代表r=r(s) r=(r1,r2,r3,・・・)
↓
N’:決定番号の集合 d∈N’ d=d(s)
↓
N:自然数の集合
となる
(補足)
・しばしば、我々は無意識に、決定番号の集合N’と自然数の集合Nとを同一視してしまう
・だが、決定番号の集合N’は、問題の数列sと代表r=r(s)との関係で、多く(非可算無限)の重複を含む集合になっている
(例:決定番号2なら、s=(s1,s2,s3,・・・)とr=(r1,r2,r3,・・・)とで、s2=r2,s3=r3,・・・ の関係があり、s1≠r1だが、この同値類内の決定番号2の元は、R^1の自由度がある。
同様に、決定番号3なら、R^2の自由度。決定番号nなら、R^(n-1)の自由度。)
・可算無限長の数列を簡単のために2列で考えると、2列の決定番号の大小比較は自然数の集合Nのレベルで行うが、その背景に決定番号の集合N’があるから、大小の確率を考えるときは、本来、決定番号の集合N’をベースに考える必要がある
・ところで、以前の議論でもあったように、有限な自然数の部分集合(1,2,3,・・・,m)で、あるx(1<= x <=m)を考えると、x <= m/2 (平均以下)である確率は、mが十分大きければ1/2だろう
・しかし、m→∞(つまり集合が自然数の集合Nになる)では同じ議論はできない
・そして、考えるベースが、決定番号の集合N’であれば、なおさら、単純に確率1/2とは言えない。ここらが手品のタネだろう
以上