暇つぶし2chat MATH
- 暇つぶし2ch413:現代数学の系譜 雑談 古典ガロア理論も読む
18/01/11 10:54:01.96 clSPRjXH.net
>>383
>結局実関数 f(x) を直線R上で定義することになる。
無問題。
実関数 f(x) を直線R上で定義し、それが解析関数なら、解析接続でき、一致の定理が適用でき、リーマン球面上の解析関数として一意である
URLリンク(ja.wikipedia.org)
解析接続
URLリンク(ja.wikipedia.org)
一致の定理
(抜粋)
一致の定理(いっちのていり、英: Identity theorem)は、複素解析において、通常は可算点列上で局所的に一致する2つの正則関数が大域的に一致することを主張する定理である。重要な定理であり、解析接続の一意性の証明にはこの定理が必要となる。
この定理には名は冠されていないが、1844年頃、リウヴィルが楕円関数に特殊な形で適用したのが最初であり、直後にコーシーが自分が開発した複素解析の中に取り入れて一般化したものである[1]。
(引用終わり)


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch