17/12/28 16:57:35.12 XpoKjxLL.net
[続き]
――――――――――――――――――――――――
証明その3:
f は点 x で微分可能とする。ケース1,2に場合分けすることで、f が点 x で連続であることを導く。
ケース1: f は点 x で連続であると仮定する。よって、f は点 x で連続である。
ケース2: f は点 x で連続でないと仮定する。一方で、lim[y→x](f(y)-f(x))/(y―x) = f'(x) が存在するのだったから、
lim[y→x](f(y)-f(x)) = lim[y→x](f(y)-f(x))/(y-x) * (y-x) = f'(x) * 0 = 0 となる。
すなわち、lim[y→x] f(y)=f(x) となる。よって、f は点 x で連続である。
よって、いずれのケースにおいても、f は点 x で連続であることが言えた。
――――――――――――――――――――――――
上記の証明は、本質的には「その2」と全く同じであり、
――――――――――