暇つぶし2chat MATH
- 暇つぶし2ch219:1より) ”p が集合の境界点となる必要十分条件は、p の任意の近傍が少なくとも一つその集合の点を含みかつ少なくとも一つその集合の補集合の点を含むことである。” (引用終り) 外しているかも知れないが、これを、日常の例えで言えば 光学顕微鏡の分解能では、原子レベルの入り組んだ構造は、見えないってことかな ε近傍という内点を持つ分解能で、内点を持たない稠密集合の境界を探しても、 ε近傍の分解能ではある集合Sの点とその補集合S ̄の点と、常に両方が見える そういう理解で当たらずとも遠からずかな?(^^




次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch