暇つぶし2chat MATH
- 暇つぶし2ch204: 従って、(1)に限り否定される。その結果、 「(3)」:f は開区間(a, b) の上でリプシッツ連続ではない. となる。ここに、この開区間(a, b) とfは「それぞれ」定理1.7 (422 に書いた定理) の証明で用いられる開区間(a, b) とf : R → R 「に一致させることが出来る」。 定理1.7 (422 に書いた定理) の証明と、その中で使っている補題1.5、補題1.6、系1.4の各証明では背理法は全く用いてなく、直接的に証明をしている。 そして、定理1.7 (422 に書いた定理) の証明の中では直接的にfが開区間(a, b) 上でリプシッツ連続なことを導いている。 この証明の中では開区間(a, b) は適当に選んで取っている。もし定理1.7 (422 に書いた定理) を否定すると、 他にも準備が必要になるが、その証明は大体結論から仮定へと順々に否定されて行き、 やがてfは開区間(a, b) 上でリプシッツ連続ではないことが示される。この結果は(1)に反することになる。 だから、定理1.7 (422 に書いた定理) の否定は出来ない。 (引用終り) つづく




次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch