18/01/05 00:08:43.66 miqaDy4s.net
>>183 つづき
系1.8 有理数の点で不連続, 無理数の点で微分可能となるf : R → R は存在しない.
証明
存在すると仮定する. 定理1.7 のBf について,
R - Q = (無理数全体) = (f の微分可能点全体) ⊆ Bf
が成り立つので,
R - Bf ⊆ Q = ∪p ∈Q {p} ・・・(1)
である. ここで, 1 点集合{p} (p ∈ Q) は全部で可算無限個あり, 各{p} は内点を持たない閉集合であ
るから, (1) の右辺は内点を持たない閉集合の可算和である. よって, 定理1.7 が使えて, f はある開
区間(a, b) の上でリプシッツ連続である. 特に, f は(a, b) の上で連続である (2) さて, Q はR 上
で稠密だから, (a, b) ∩ Q ≠ Φ である. そこで, x ∈ (a, b) ∩ Q を何でもいいから1 つ取る. (2) より,
f は点x で連続であるが, 一方で, x ∈ Q とf の仮定により, f は点x で不連続である. これは矛
盾. よって, 題意が成り立つ.
つづく