18/01/05 00:08:18.88 miqaDy4s.net
>>182 つづき
が成り立つことが簡単に確認できる(L の取り方に注意する). ここで,
ci ∈ [zi, zi+1] ⊆ [x, y] ⊆ (a, b) ⊆ BN,M
すなわちci ∈ BN,M であるから, これと(3) 及びBN,M の定義から,
|f(zi+1) - f(zi)| <= N(zi+1 - zi)
が成り立つ. よって,
|f(y) - f(x)| = |f(zL) - f(z0)| =|Σi=0~L-1 (f(zi+1) - f(zi))|
<= Σi=0~L-1 |f(zi+1) - f(zi)| <= Σi=0~L-1 N(zi+1 - zi) = N(y - x)
となる. よって、 f は(a, b) 上でリプシッツ連続である.
つづく