暇つぶし2chat MATH
- 暇つぶし2ch190::={x ∈ R | ∀y, z ∈ R [x - 1/M < y < x < z < x +1/M) |f(z) - f(y)| <= N(z - y)] } と置く. このとき, Bf ⊆ ∪N ,M>=1BN,M が成り立つことを示す. x ∈ Bf を任意に取る. このと き, 補題1.5 を満たすN,M >= 1 が存在するので, 明らかにx ∈ BN,M である. よって, 確か にBf ⊆ ∪N ,M>=1BN,M である. (1) と合わせて, R = Bf [ (R-Bf ) ⊆ (∪N ,M>=1BN,M ) [ (∪i Ai) と なる. すなわち, R ⊆ (∪N ,M>=1BN,M ) [ (∪i Ai) ・・・ (2) となる. 次に, 各BN,M は閉集合であることを示す. x ∈ R とxi ∈ BN,M (i >= 1) はxi → x (i → +∞) を満たすとする. このとき, x ∈ BN,M が成り立つことを示せばよい. そのためには, ∀y, z ∈ R[x - 1/M < y < x < z < x +1/M ) |f(z) - f(y)| <= N(z - y)] を示せばよい. さて, x - 1/M < y < x < z < x +1/M が成り立つようなy, z ∈ R を任意に取る. xi → x と補題1.6 により, i が十分大きければ xi - 1/M < y < xi < z < xi +1/M つづく
次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch