暇つぶし2chat MATH
- 暇つぶし2ch188:現代数学の系譜 雑談 古典ガロア理論も読む
18/01/05 00:06:03.45 miqaDy4s.net
>>179 つづき
補題1.6 x ∈ R とxi ∈ R (i >= 1) はxi → x (i → +∞) を満たすとする. このとき, 次が成り立つ.
・ ∀y > x, ∃i0 >= 1, ∀i >= i0 [ y > xi ] .
・ ∀y < x, ∃i0 >= 1, ∀i >= i0 [ y < xi ] .
証明は単なる"-δ論法なので省略する.
定理1.7 (422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) - f(x))/(y - x)|< +∞ }
と置く: もしR-Bf が内点を持たない閉集合の高々可算和で被覆できるならば、 f はある開区間の
上でリプシッツ連続である.
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch