17/12/25 23:47:20.19 R/y0B5bE.net
>>552 つづき
(>>303より)
”定理1.7 (422 に書いた定理)
・・・「R-Bf が内点を持たない閉集合の高々可算和」・・・”
で、「R-Bf が内点を持たない閉集合の高々可算和」とは、なんだろうかと考えていた・・、連続濃度まで許すということにもからんで
1)「R-Bf が内点を持たない閉集合の高々可算和」で、Rで稠密で無ければ・・、「f はある区間(a, b) 上でリプシッツ連続」は自明
2)「R-Bf が内点を持たない閉集合の高々可算和」で、Rで稠密であれば・・、「f はある区間(a, b) 上でリプシッツ連続」は取れない(このケースは不存在)
だから、定理1.7 (422 に書いた定理)の証明では、1)の場合の証明は、全く不要で
2)の場合を厚く書いて、何か矛盾が起きることをしっかり証明すべきだったのでは?
(例えば、そういう函数が存在しないか、あるいは、「R-Bf が内点を持たない閉集合の高々可算和」での被覆ができないとか)
重ねて言えば、2)の場合について、「定理1.7に抵触するので、不成立」では、循環論法ではないだろうか?
(例えば、証明中で、無造作に区間(y,x)を取ったり、いろんな計算をしているが、R-Bf が”Rで稠密”という条件下では、許されない計算をしていないかどうか・・?)
つづく