現代数学の系譜 工学物理雑談 古典ガロア理論も読む48at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 - 暇つぶし2ch41:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/15 07:30:23.93 dUFtnfpO.net
>>36 関連
いま、>>34で紹介した「トマエ関数の性質と連続関数の極限による表示」を読み返していたが
この話自身もすごく面白いが、関連リンクがあって、それを辿ると、下記
Baire(ベール)関数 ”定理 f:R→RをBaire-1級関数とする。このとき、任意の閉区間I⊂Rは fが連続であるような点を含む。”が
上記”開区間上リプシッツ連続定理”と似てるな~と
証明で、(Baireのcategory定理の一種)を使うところも似てるな~と
似てるけど、微妙に違う
ここらが、”開区間上リプシッツ連続定理”の反例にならないかな~(^^
といま、考えているところです
(下記は、単純にコピペでアスキー表示にしたので、原文の方が圧倒的に見やすいよ)
URLリンク(integers.hatenablog.com)
二回目のディリクレ関数 INTEGERS 2016-05-20
(抜粋)
Baire(ベール)関数
Baire関数 関数f:R→RがBaire-1級関数であるとは、各n∈N毎に連続関数fn:R→Rが存在して、任意のx∈に対して
f(x)=limn→∞fn(x)
が成り立つときにいう(つまりfnがfに各点収束する)。一般に非負整数kに対してBaire-k級関数が次のように帰納的に定義される: Baire-0級関数を連続関数として定義し、Baire-(k?1)級関数までが定義されたとき、Baire-(k?1)級関数達の各点収束関数としてBaire-k級関数を定義する。これらの関数を総称してBaire関数とよぶ。
目標は次の定理を証明することです:
定理 f:R→RをBaire-1級関数とする。このとき、任意の閉区間I⊂Rは fが連続であるような点を含む。
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch