現代数学の系譜 工学物理雑談 古典ガロア理論も読む48at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む48 - 暇つぶし2ch125:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/16 15:04:54.86 /2xvBEHK.net
>>116
>"c points"の意味が分らん(^^
違うかも知れないが、検索ヒットと他にめぼしいヒットがないので下記を貼る
(下記だと、cは連続濃度の意味だね)
URLリンク(mathoverflow.net)
(抜粋)
Is a random subset of the real numbers non-measurable? Is the set of measurable sets measurable?
edited Nov 29 '12 at 22:06
19 answered Jul 16 '12
The answer to your second question (assuming the axiom of choice, to dodge Asaf's comment) is that 2^R/Σ has dimension 2^c, where c=2^?0 is the cardinality of the continuum.
The main ingredient of the proof is a partition of [0,1] into c subsets, each of which intersects every uncountable closed subset of [0,1].
To get such a partition,
first note that there are only c closed subsets of [0,1], so you can list them in a sequence of length (the initial ordinal of cardinality) c in such a way that each closed set is listed c times.
Second, recall that every uncountable closed subset of [0,1] has cardinality c.
Finally, do a transfinite inductive construction of c sets in c steps as follows:
At any step, if the closed set at that position in your list is C and if this is its α-th occurrence in the list,
then put an element of C into the α-th of the sets under construction, being careful to use an element of C that hasn't already been put into another of the sets under construction.
You can be this careful, because fewer than c points have been put into any of your sets in the fewer than c preceding stages, while C has c points to choose from. At the end, if some points in [0,1] remain unassigned to any of the sets under construction, put them into some of these sets arbitrarily, to get a partition of [0,1].
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch