現代数学の系譜 工学物理雑談 古典ガロア理論も読む47at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む47 - 暇つぶし2ch613:132人目の素数さん
17/12/11 22:42:38.19 B18Ximu9.net
>>541
だから自演はやめろとw
あの赤っ恥をもう忘れたのか?恥知らずw

614:132人目の素数さん
17/12/11 22:46:31.73 B18Ximu9.net
>誹謗中傷を撤回するという行為に、素人もクソもないだろう?なぜ誹謗中傷を撤回しないのだ?
マトモな数学の議論ではフルボッコされて誹謗中傷でしか自尊心を保てないから

615:132人目の素数さん
17/12/11 22:52:05.29 B18Ximu9.net
>>547
>誹謗中傷でもなんでもない
>怪しいから、怪しいと言った
怪しいと難癖つけるからには根拠を示すべき、それが世の中の常識というもの
スレ主は常識すら無い

616:132人目の素数さん
17/12/11 22:57:02.98 MdL+rXP+.net
>>557
>数学の議論になってないのは、スレ主が俺の「証明」を拒否するからである。
証明はどこ?

617:132人目の素数さん
17/12/11 23:05:07.60 klK9xJGy.net
>>561
証明はこのスレには書いていない。
しかし、「証明を書いてもいい」と俺は何度も言っている。
だが、スレ主は、この申し出を拒否している。
「どこの馬の骨とも知らない人間の証明を読む気は起こらない」
ということらしい。その言い分は確かに一理あるが、そもそも証明を読む気がないのなら、
他人の書き込みに図々しく「間違ってると思うよ」なんて発言しては ならないので、
全体としては単なる「逃げ」であり、単なる「詭弁」である。
ちなみに、証明は既に手元に用意してある。
テキスト形式でこの掲示板に書くこともできるし、
pdf 形式のファイルでも用意してある。

618:132人目の素数さん
17/12/11 23:07:21.99 B18Ximu9.net
>「どこの馬の骨とも知らない人間の証明を読む気は起こらない」
要するにスレ主は数学がしたいのではない
上から目線で気持ち良くなりたいだけ
このスレを立て続けるのもそのため

619:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/11 23:


620:41:02.73 ID:H5YTMI7H.net



621:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/11 23:41:27.31 H5YTMI7H.net
>>564 つづき
(参考)
URLリンク(mathforum.org)
(抜粋)
[4] Bohus Jurek, "Sur la derivabilite des fonctions a
variation bornee", Casopis Pro Pestovani Matematiky
a Fysiky 65 (1935), 8-27
[13] Gerald Arthur Heuer, "Functions continuous at irrationals
and discontinuous at rationals", abstract of talk given
2 November 1963 at the annual fall meeting of the Minnesota
Section of the MAA, American Mathematical Monthly 71 #3
(March 1964), 349.
THEOREM: If g is continuous at
the irrationals and not continuous at the rationals, then
there exists a dense uncountable subset of the reals at
each point of which g fails to satisfy a Lipschitz condition.
REMARK BY RENFRO: The last theorem follows from the following
stronger and more general result. Let f:R --> R be such that
the sets of points at which f is continuous and discontinuous
are each dense in R. Let E be the set of points at which f
is continuous and where at least one of the f


622:our Dini derivates of f is infinite. Then E is co-meager in R (i.e. the complement of a first category set). This was proved in H. M. Sengupta and B. K. Lahiri, "A note on derivatives of a function", Bulletin of the Calcutta Mathematical Society 49 (1957), 189-191 [MR 20 #5257; Zbl 85.04502]. See also my note in item [15] below. つづく



623:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/11 23:42:45.13 H5YTMI7H.net
>>565 つづき
[15] Gerald Arthur Heuer, "Functions continuous at the
irrationals and discontinuous at the rationals",
American Mathematical Monthly 72 #4 (April 1965), 370-373.
[MR 31 #3550; Zbl 131.29201]
THEOREM 5: If g is a function discontinuous at the
rationals and continuous at the irrationals,
then there is a dense uncountable subset
of the reals at each point of which g fails
to satisfy a Lipschitz condition.
(p. 373) "We omit the proof, because it is rather lengthy,
and one would hope to generalize the theorem by replacing
the rationals by an arbitrary dense set, and possibly to
show that the set of points at which g fails to be
Lipschitzian is a residual set."
つづく

624:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/11 23:43:22.87 H5YTMI7H.net
>>566 つづき
NOTE: Sengupta/Lahiri had essentially obtained this result
in 1957 (the points of discontinuity have to form an
F_sigma set, however). See my remark in [13] above.
This result is also proved in Gerald Arthur Heuer,
"A property of functions discontinuous on a dense set",
American Mathematical Monthly 73 #4 (April 1966),
378-379 [MR 34 #2791]. Heuer proves that for each
0 < s <= 1 and for each f:R --> R such that
{x: f is continuous at x} is dense in R and
{x: f is not continuous at x} is dense in R,
the set of points where f does not satisfy a
pointwise Holder condition of order s is the
complement of a first category set (i.e. a co-meager
set). By choosing s < 1, we obtain a stronger version
of Sengupta/Lahiri's result. By intersecting the
co-meager sets for s = 1/2, 1/3, 1/4, ..., we get
a co-meager set G such that, for each x in G, f does
not satisfy a pointwise Holder condition at x for
any positive Holder exponent. (Heuer does not
explicitly state this last result.) A metric space
version of Heuer's result for an arbitrary given
pointwise modulus of continuity condition is essentially
given in: Edward Maurice Beesley, Anthony Perry Morse,
and Donald Chesley Pfaff, "Lipschitzian points",
American Mathematical Monthly 79 #6 (June/July 1972),
603-608 [MR 46 #304; Zbl 239.26004]. See also the last
theorem in Norton [17] below.
(引用終り)
以上

625:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/11 23:44:29.46 H5YTMI7H.net
で、あんたの定理にプロのお墨付きがつけば、赤っ恥をかくのは私の方だよ!
と宣言した上で、なお言っておく
あんたの定理は怪しいし
私は成立しないと思うよ

626:132人目の素数さん
17/12/11 23:51:18.32 vsP/3n5g.net
>>568
> で、あんたの定理にプロのお墨付きがつけば、赤っ恥をかくのは私の方だよ!
> と宣言した上で、なお言っておく
>
> あんたの定理は怪しいし
> 私は成立しないと思うよ
証明を読む能力はなく、反例も潰され、もうスレ主には何も残ってないわけだが

627:132人目の素数さん
17/12/11 23:54:53.26 vsP/3n5g.net
>>568
> で、あんたの定理にプロのお墨付きがつけば、赤っ恥をかくのは私の方だよ!
今はまだ赤っ恥をかいてない と思っている豪胆さが凄い

628:132人目の素数さん
17/12/11 23:55:54.17 klK9xJGy.net
>>564
>数学には誹謗中傷もくそもないよ
>文系<数学ディベート>(>>8)かい?
分かってないな。数学以前の段階に誹謗中傷が存在しているのである。
スレ主はずっと混同しているが、俺が要求していることは、数学の話ではないのである。
一般論として、数学に限らず、相手の発言に対して
「それは間違ってると思うよ」
とイチャモンをつけるなら、今度は相手からの弁明を聞かなければならないのである。
それがイチャモンをつけた側の義務である。相手の弁明を聞く気が無いのに、
「それは間違ってると思うよ」と言い放つだけなら、それはつまり
「それは間違ってると思うよ。あ、君からの弁明は聞く気が無いのでヨロシク」
と言っているのと同じことであり、これでは単なる誹謗中傷である。
そして、まさにこのような行為を行っているのがスレ主である。
だから俺は、誹謗中傷を撤回しろと言っているのである。
「俺が正しいことを認めろ」と言っているのではなく、
「誹謗中傷を撤回しろ」と言っているだけである。
つまり、これは数学の話ではなく、一般的なマナーの話である。
数学に誹謗中傷があるのではなく、数学以前の段階の、
一般的なマナーにおいて、スレ主の誹謗中傷が存在しているのである。
全てはスレ主の「相手の弁明を聞く気がない」というイビツな態度が原因である。
詭弁もいい加減にしてほしい。

629:132人目の素数さん
17/12/12 00:04:18.26 14lo33mI.net
>>568
>あんたの定理は怪しいし
>私は成立しないと思うよ
「そんなに懐疑的なら、証明を提示してもよい」と俺は言っているのである。
しかしスレ主は「証明を読む気は無い」と言っているのである。
となれば、スレ主の行動は結果的に
「どうせお前の証明は間違っているぞ。証明も読まないぞ」
という誹謗中傷になっているのである。明確に誹謗中傷である。
そして、上のレスで既に書いたが、これは数学における誹謗中傷ではなく、



630:数学以前の段階で発生している誹謗中傷である。ゆえに、スレ主が言うところの 「数学に誹謗中傷もクソもない」 という詭弁は通用しないのである。 そして、俺は何度も「その誹謗中傷を撤回せよ」と言っているのである。 「俺が正しいことを認めろ」と言っているのではなく、 「誹謗中傷を撤回せよ」と言っているのである。 全てはスレ主の「相手の弁明を聞く気がない」というイビツな態度が原因である。 詭弁もいい加減にせよ。



631:132人目の素数さん
17/12/12 00:04:38.27 ItXIVsgQ.net
証明を読む能力が無い時点で「いいから黙ってろ」なんだがw
スレ主の最善手は黙ることだ、いや、スレの削除依頼かな

632:132人目の素数さん
17/12/12 00:06:20.15 ItXIVsgQ.net
スレ主は数学はともかく国語の能力はつけろよw
話にならんぞw

633:132人目の素数さん
17/12/12 00:10:51.49 H8wC4JgV.net
>>562
じゃ
どこかに上げてくれないかな?

634:132人目の素数さん
17/12/12 00:37:43.98 14lo33mI.net
>>575
今は >>571-572 に対するスレ主の反応待ちである。
もしスレ主からの「誹謗中傷の撤回」が無かったら、
手元にある pdf ファイルを どこかのうpろだに上げることにする。
(スレ主にはトドメをさすような形になってしまうが、
ここまでゴネている相手には問題なかろう。)
ただし、俺が応答できるのは夕方から深夜なので、実際にうpするのは
明日(日付が変わったので厳密には今日だが)の夕方になると思われる。

635:132人目の素数さん
17/12/12 01:24:45.18 H8wC4JgV.net
>>576
勿体付ける人ねw
まいいか
読んでみたいよそれ
スレ主も読みたいはず

636:132人目の素数さん
17/12/12 01:57:04.65 6zLifT5V.net
>>577
逃げ回るぷ君へ
2017/11/12(日) 17:57:50.63 ID:hePUuc7P
>>94
> 全く意味がないことばかり書くのね
> 別にx0が毎回変わってもいいよ
> f(x0)以外が開示されているということが重要
> x0が毎回変わろうが変わるまいがf(x0)=g(x0)になる確率は0
予想どおりの回答をありがとう。不正解ですw
なんで不正解か分かりますか?
>>74, 78
> [確認問題]
> 前スレのぷ君の『x=0戦略』を考える。
> 全事象Ω={0}、P(0)=1という自明な確率空間を取ることが出来る。
> すなわちこの問題ではxは確率変数とみなせる。
> fもgも任意であり、事前に与えられているとする。
> このときf(0)=g(0)となる確率は?
260 132人目の素数さん sage 2017/11/18(土) 14:13:33.24 ID:LAjmabkB
自分に見えない数字はみな確率変数であるというのが ぷ君 の持論である
ちなみにぷ君は前スレで
>>>506
>> 無限帽子は何を確立事象と見るかよく考えないと騙されちゃうよ
>
>>>832
>> 確率自称が分かってない
と確立もとい確率事象の見分けに自信がお有りのようだったw
にも関わらず>>95はぷ君には意味が分からないらしい
もっと簡単で誰にでもわかる問題を出そう
スレ主も答えていいぞ笑 
ぷ君を援護してやれ
---
目の前に封筒があり、中には6以下の自然数xが書かれたカードが入っている
ぷ君に封筒の中身は見えない
--
さて、ぷ君に質問だ
問1
この自然数xは確率変数か?
確率変数であるというなら証明せよ。
すなわち、xがどのような標本空間と測度で選ばれるのかを一切の仮定なしに示せ
(示せるものなら笑)
問2
ぷ君は箱の中身xが1であると睨んだ
ぷ君お得意のx=1戦略である
この予想が正しい確率を一切の仮定なしに求めよ
(求められるものなら笑)
問3
ぷ君はサイコロ�


637:Uることにした 出目と封筒の中身が一致する確率を求めよ



638:132人目の素数さん
17/12/12 02:00:18.08 6zLifT5V.net
>>575>>577はぷ君
証明を読む数学力がないことは>>578を読めば明らか

639:132人目の素数さん
17/12/12 02:17:32.83 6zLifT5V.net
>>576
外野から申し訳ないですが、証明を出す際には強制的にスレ主に理解させるのではなかったですか?
それをせずに、ぷ君の煽りに乗って証明をアップするというのはどうにも理解しづらいです。

640:132人目の素数さん
17/12/12 06:55:29.85 H8wC4JgV.net
>>580


641:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/12 07:07:37.35 QZzpEMYK.net
>>576
どうも。スレ主です。
どなたか知らないが
>もしスレ主からの「誹謗中傷の撤回」が無かったら、
数学に誹謗中傷はないよ。だが、あんたの定理不成立の主張は、実際そう思っているので撤回しない
その理由は、>>564に書いた
>手元にある pdf ファイルを どこかのうpろだに上げることにする。
まあ、pdfなら読んでも良い気がするし、おれよりLipschitz condition などに詳しいそれなりの人も読むだろうから、良いと思うよ
>(スレ主にはトドメをさすような形になってしまうが、
大げさな。そもそも、>>282であなたの定理にイチャモンを付けた時点で、勝敗は決まっている。
あなたの証明公開は些事だ。
正しい定理なら、すでにどこかで論文になっているか、あるいは、これからだれかが論文にして本当の定理になるだろう
>ここまでゴネている相手には問題なかろう。)
訳分からん。おれは、証明をこのスレに書くなと言っただけ。
きちんと、学術誌に投稿すべきだと。
どう曲解したら、”ゴネている”とか、”トドメをさす”に、なるのかね?(^^

642:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/12 07:08:37.62 QZzpEMYK.net
>>575 >>581
オハヨー、朝です。
(^o^)
ああ、「ぷふ」さんか(^^
PDFとか、まっとうな書式での証明文アップは、良い提案だね

643:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/12 07:09:47.92 QZzpEMYK.net
>>577
>スレ主も読みたいはず
読みたくはないが、PDFなど正規の書式なら読んでも良いと思うよ。
>>564に書いた既出文献と、比較できるからね

644:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/12 07:10:32.86 QZzpEMYK.net
>>580
>強制的にスレ主に理解させる
勘弁してくれ(^^
パズルで、絵の間違い探しとか、隠し絵とかあるだろ?
まあ、いまの所見では、その定理は間違っているから、上記のパズルと同じだと思う。
誹謗中傷でなく、正直な感想だよ
それに、Lipschitz condition などに詳しくないから、間違いを見つけるには時間が掛かるだろう
だが、そのPDFなどを見たそれなりのプロ並みに詳しい人なら、きっと間違いを見つけてくれだろう(^^

645:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/12 07:21:26.97 QZzpEMYK.net
>>575 >>581
余談だが、「ぷふ」さんが来てくれたおかげで
時枝が沈静化して、助かった
ありがとう\(^^/

646:132人目の素数さん
17/12/12 07:23:10.14 ItXIVsgQ.net
>ああ、「ぷふ」さんか(^^
分かり易い自演w

647:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/12 07:26:31.05 QZzpEMYK.net
>>578
>逃げ回るぷ君へ
横レスだが
さすが論争当事者のHigh level peopleさん
これだけのヒントで、「ぷふ」さんと分るんだ(^^
私スレ主のなりすましと曲解する
最下位の人とは、さすがに違うね(^^

648:132人目の素数さん
17/12/12 07:27:32.45 ItXIVsgQ.net
朝っぱらから自演全開の恥知らずw

649:132人目の素数さん
17/12/12 07:30:59.38 ItXIVsgQ.net
ぷは見解一つ述べれないアンポンタンなんだからひたすら黙ってればいいのだ
何が証明を上げろだw スレ主同様読まないくせしてw

650:132人目の素数さん
17/12/12 08:09:30.42 H8wC4JgV.net
>>590
見解を述べてないのは誰かな?

(君は関係ないよ)

651:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/12 08:10:47.75 QZzpEMYK.net
それ、>>589の"自演全開の恥知らずw"と、>>590の"何が証明を上げろだw スレ主同様読まないくせしてw"と、
自己矛盾

652:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/12 08:12:16.35 QZzpEMYK.net
>>591
「ぷふ」さん、どうも。スレ主です。
その人は、最下位の人で、言っていることのレベルが低いね

653:132人目の素数さん
17/12/12 17:27:58.55 14lo33mI.net
>>582
>数学に誹謗中傷はないよ。だが、あんたの定理不成立の主張は、実際そう思っているので撤回しない
>その理由は、>>564に書いた
だから、数学以前のところに誹謗中傷が存在していると言っている。相手の弁明を聞く気が無い奴


654:が イチャモンをつけると、そのイチャモンは誹謗中傷にしかならないのである。 全てはスレ主の「相手の弁明を聞く気がない」というイビツな態度が原因である。 ただし、pdf ならスレ主も証明を読む気があるらしいので、そうなると話は一変する。 相手の弁明を聞く気があるなら、イチャモンをつけても、それ単独では誹謗中傷には ならないからだ。 そして、証明を次のレスで投下する(うpろだに上げたのでリンクを張る)。



655:132人目の素数さん
17/12/12 17:31:09.14 14lo33mI.net
以下の pdf に証明を書いた。
URLリンク(www.axfc.net)
なるべく行間が無いように、丁寧に証明を書いたつもりである。
なお、「疎な閉集合」は「内点を持たない閉集合」と同じことであるから、
pdf の中では「疎な閉集合」という概念を導入せず、必要な個所では その都度
「内点を持たない閉集合」
という言葉に置き換えた。

656:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/12 19:44:23.24 QZzpEMYK.net
>>594-595
ID:14lo33mIさん、どうも。スレ主です。
ご苦労さまです
この板に直接書かれるより、遙かに見やすいね
これなら読んでみようかという気にさせるね
で、ざっと読んでみたが、正直にわかには理解できない
まあ、皆さんこれを読んで、同意 or 不同意を書いてくれるんじゃないかな?
私が、これを理解するより
そちらが早いだろう
それに「ぷふ」さんが読んでみたいと言っていたし
まあ、「ぷふ」さんOK出せば、かなり確度は高いだろうね~(完全かどうか不明だが・・)(^^

657:132人目の素数さん
17/12/12 20:19:27.17 ItXIVsgQ.net
>>591
>見解を述べてないのは誰かな?

因みに俺は既に述べている

658:132人目の素数さん
17/12/12 20:22:08.70 ItXIVsgQ.net
>>592
何が矛盾?

659:132人目の素数さん
17/12/12 20:24:17.98 ItXIVsgQ.net
>>593
だから自演すなと何度言わせるんだ?
恥知らずもたいがいにしておけ

660:132人目の素数さん
17/12/12 20:25:48.87 ItXIVsgQ.net
結論
スレ主は小学校の道徳からやり直せ

661:132人目の素数さん
17/12/12 20:29:27.48 ItXIVsgQ.net
>>596
>私が、これを理解するより
>そちらが早いだろう
いつもの通り人任せ
人任せにするくらいなら最初から「怪しい」などと言わなければいいのである
言う権利が無いのである
はい、道徳からやり直し、小学生に教えてもらえ

662:132人目の素数さん
17/12/12 20:32:00.47 ItXIVsgQ.net
>それに「ぷふ」さんが読んでみたいと言っていたし
>まあ、「ぷふ」さんOK出せば、かなり確度は高いだろうね~(完全かどうか不明だが・・)(^^
おい、ぷ 期待されてるみたいだぞw
数学的に見解を述べたらどうだ?無根拠な中傷でなく
それともまた逃亡ですか? っぷ

663:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/12 20:41:43.01 QZzpEMYK.net
>>594-595 (付録 >>597-602)
あなたの証明は理解できないが・・、マジレスしておくと
>>282 より
スレリンク(math板:421番)-422
”定理:f:R → R に対して、B_f={ x∈R|limsup[y→x]|(f(y)-f(x))/(y-x)|<+∞ } と置く。
もし R-B_f が高々可算無限個の疎な閉集合の和で被覆できるならば、f はある開区間の上で
リプシッツ連続である。”
から、
”上の定理が使えて、f はある開区間(a,b)の上で リプシッツ連続になる。”
”QはR上で稠密だから、x∈(a,b)∩Qが取れる。仮定から、fは点xで不連続であるが、しかしx∈(a,b)より、fは点xで連続であり、矛盾する。”
という論法だったでしょ?
同じ論法で考えると、(上記で、”fは点xでリプシッツ不連続であるが、しかしx∈(a,b)より、fは点xでリプシッツ連続であり、矛盾する”と書き換えて)
リプシッツ不連続な点(それは内点を持たないとする)が可算無限個あって、それら可算無限個の点が、有理数のようにR中に稠密に分散されているとし、
もちろん、リプシッツ不連続な点以外は、全てリプシッツ連続で、B_f={ x∈R|limsup[y→x]|(f(y)-f(x))/(y-x)|<+∞ } を満たすとする。
「そういう関数は、数学的に存在しえない!」
そういう主張になると理解しているんだけど?
それで良いのかな?
そこ、すごく疑問なんだよね

664:132人目の素数さん
17/12/12 21:09:16.31


665:14lo33mI.net



666:132人目の素数さん
17/12/12 21:11:01.59 H8wC4JgV.net
>>597
(君は関係ないよ)

667:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/12 21:40:34.53 QZzpEMYK.net
>>604
まあ、良いけどね
>そして、証明を理解するよりも前に何を「余計なこと」ばかりを考えているのだ。
違うと思うよ。数学というのは、そう独善にならずに、多角的に考えるべきというのが私の信念でね
「反例が無いか?」は、自分でしっかり、考えた方がいいぜ。それ、数学を研究するなら基本だろう
>「一点におけるリプシッツ連続」という言葉遣いは見たことが無い。あえて定義するなら、
曲解だな。「一点におけるリプシッツ”不”連続」と言ったんだよ
ところで
”―――――――――――――――――――――
R-B_f = (リプシッツ不連続な点全体の集合) が可算無限集合であり、
しかもこれが R の中で稠密であるとすると、「そういう関数は数学的に存在しえない!」
という理解の仕方でいいのか?
―――――――――――――――――――――
ということになるが、その理解の仕方で問題ない。”
か・・。
これこそ、これが正しいなら、だれかがどこかで定理にしていて、教科書にでも載りそうな命題に思うけどね
まあ、もし正しいなら、あなたの定理として、論文にするのが良いんじゃないですか?

668:132人目の素数さん
17/12/12 21:42:57.82 4+X93l99.net
リーマンのゼータ関数の零点が可算個かどうか明示公
式を見て何年も前から気になっていたが解決した。
完備な距離空間が非可算であれば第二類の集合だから
内点を持つ(ベールのカテゴリー定理からすぐ言える)
。距離空間C=R^2の部分集合Aが完備であれば上述
よりAは内点を持つ。Aは内点を持つから(Iの閉包)⊂A
を満たす或るR^2の開区間Iを含む、Iの閉包の任意の
点はIの集積点である。ゆえにAは集積点を含む。だか
ら一致の定理より定数関数としての0ではない1変数正
則関数の零点は可算個である。非可算個あれば全て集
積点になり一致の定理よりその1変数正則関数は定数
関数としての0しか有り得ない。
多変数正則関数では同じような命題は成り立たない。

669:132人目の素数さん
17/12/12 21:48:40.93 ItXIVsgQ.net
>一体どこで躓いているというのだ
εN論法(一年生一学期)で躓いてます
いや、その前に小学校の道徳で躓いてます

670:132人目の素数さん
17/12/12 21:49:13.43 14lo33mI.net
>>606
>違うと思うよ。数学というのは、そう独善にならずに、多角的に考えるべきというのが私の信念でね
>「反例が無いか?」は、自分でしっかり、考えた方がいいぜ。それ、数学を研究するなら基本だろう
スレ主流の言い方をすると、
「この pdf 程度の証明も理解できないようなド素人がいくら反例モドキを提示してきても、全く読むに値しない」
と声を大にして言いたい。
だが、俺はスレ主ではないので、反例だと提示されたものは きちんと読むし、反論もする。
だが、こんな回りくどいことばかりしてないで、スレ主はさっさと証明を理解すべきである。
一体どこに躓くポイントがあるというのだ。こんなに簡単な証明なのに。
よほど難解な pdf ならまだしも、この程度のクソ簡単な pdf に何を屁理屈をこねているのだ。
もし pdf の中に間違いを発見できたならば、その間違いを提示する方が、スレ主にとっても俺にとっても
「直接的」であるから、話が早いではないか。つまり、スレ主は反例モドキを探し回るという間接的な
アプローチをや


671:めて、pdf の証明を直接的に理解すべきである。



672:132人目の素数さん
17/12/12 21:50:26.02 ItXIVsgQ.net
>数学というのは、そう独善にならずに
と、稀代の独善君が申しておりますw

673:132人目の素数さん
17/12/12 21:51:27.61 ItXIVsgQ.net
>>605
予想通り逃亡乙w

674:132人目の素数さん
17/12/12 21:53:11.34 ItXIVsgQ.net
>一体どこに躓くポイントがあるというのだ。こんなに簡単な証明なのに。
何しろ一年生一学期の授業に着いていけないバカですから

675:132人目の素数さん
17/12/12 21:55:34.14 14lo33mI.net
以下のレスはツッコミを入れても あまり意味は無いのだが、一応レスしておく。
>>606
>曲解だな。「一点におけるリプシッツ”不”連続」と言ったんだよ
曲解ではない。全く同じことである。「一点におけるリプシッツ不連続」という用語もまた、俺は見たことが無い。
そして、もしそのような用語を「一点におけるリプシッツ "連続" 」よりも先に定義しようと思ったら、
「 f が点xにおいて limsup[y→x]|(f(y)-f(x))/(y-x)|=+∞ を満たすとき、f は一点xにおいてリプシッツ不連続である」
と定義するのが自然だと思われる。この場合、その否定バージョンの用語は
「一点におけるリプシッツ連続」という用語であり、自動的に
「 f が点xにおいて limsup[y→x]|(f(y)-f(x))/(y-x)|<+∞ を満たすとき、f は一点xにおいてリプシッツ連続である」
ということになるので、結局、「一点におけるリプシッツ連続」「一点におけるリプシッツ不連続」の
どちらの用語を先に定義するかという違いしかない。
そして、どちらの用語も、「もし定義するならこう定義するのが自然だろう」という話であって、
実際にこのような用語が使われているのは見たことが無い。
そして、このような用語を定義したところで、その言葉遣いのもとで
R-B_f = (リプシッツ不連続な点全体の集合)
が成り立つのだから、だったら そのような用語は使わずに、
「 R-B_f 」という集合だけを用いて話をした方が誤解が無いと思われる。

676:132人目の素数さん
17/12/12 21:58:57.91 ItXIVsgQ.net
あなたの証明は理解できないが間違いなく怪しい

バカ丸出しw

677:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/12 22:18:36.77 QZzpEMYK.net
>>613
まあ、
”―――――――――――――――――――――
R-B_f = (リプシッツ不連続な点全体の集合) が可算無限集合であり、
しかもこれが R の中で稠密であるとすると、「そういう関数は数学的に存在しえない!」
という理解の仕方でいいのか?
―――――――――――――――――――――
ということになるが、その理解の仕方で問題ない。”
だから、もしこういう関数が存在するということになれば、反例成立で、定理は不成立だな

678:132人目の素数さん
17/12/12 22:25:08.61 14lo33mI.net
>>615
負け犬の遠吠えにしか見えない。
そのような関数の具体例が構成できたというなら見てやるが、
「もし存在するなら定理は不成立だな」
という発言だけでは、何も言ってないのと同じ。正真正銘の「負け犬の遠吠え」。
ちなみに、実際にそういう関数を構成しようとすると、
・ 当初予定していた可算無限個の点では |(f(y)-f(x))/(y-x)|=+∞ が成り立つようにできたが、
 それ以外の非常にたくさんの点でも |(f(y)-f(x))/(y-x)|=+∞ が成り立ってしまう
という現象に見舞われること請け合いである(つまり、反例は構成できない)。
あと、何度も言うけど、もし pdf の中に間違いを発見できたならば、
その間違いを提示する方が、スレ主にとっても俺にとっても「直接的」であるから、ずっと話が早い。
つまり、スレ主は反例モドキを探し回るという間接的なアプローチをやめて、pdf の証明を
直接的に理解すべきである。
証明を書いた本人がここに居るのだから、証明の中の不明な点はここで質問すればいいだけの話。
一体どこで躓いているというのだ。

679:132人目の素数さん
17/12/12 22:30:45.49 ItXIVsgQ.net
>つまり、スレ主は反例モドキを探し回るという間接的なアプローチをやめて、pdf の証明を
>直接的に理解すべきである。
時枝問題w

680:132人目の素数さん
17/12/12 22:45:45.14 ItXIVsgQ.net
人間自演に手を出すようになったら終わりだよ スレ主

681:132人目の素数さん
17/12/12 23:01:43.70 ItXIVsgQ.net
哀れなスレ主のために一つだけ忠告しといてあげよう
自演で人は騙せても自分は騙せないぞ?

682:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/12 23:07:57.61 QZzpEMYK.net
>>616
>負け犬の遠吠えにしか見えない。
そうかね~?
その定理および、それから導かれる”R-B_f = (リプシッツ不連続な点全体の集合) が可算無限集合であり、
しかもこれが R の中で稠密であるとすると、「そういう関数は数学的に存在しえない!」”
という主張はすばらしく面白いと思うが・・
すばらし過ぎ、面白過ぎ、じゃないかな・・・? 
じゃ、なんで、いままで誰も、気がつかなかったのか? 関数論の専門家たちが?
それから、その証明について、「正しい」と請け合う人は、まだいないよ
ああ、腰巾着のおっさんID:ItXIVsgQ 一人いるけどな。このおっさん、訳分からんがね

683:132人目の素数さん
17/12/12 23:10:51.35 14lo33mI.net
>>620
話が進まないので、俺の方から話を進めるぞ。

例の pdf の構成は
定義1.1 定義1.2 定理1.3 系1.4 補題1.5 補題1.6 定理1.7 系1.8 補足
となっている。この中で、定理1.3と系1.4はベールのカテゴリ定理だから疑いようがない。
また、補題1.6は基本的なε-δ論法であるから、これが理解できないなんて許されない。
また、系1.8と補足はオマケであり、明らかに今回の話の本題からは外せる。従って、残るは
補題1.5 定理1.7


684: の2つだけである。そこで、スレ主に最初の質問をする。 「補題1.5 は理解できたか?YESかNOかで答えよ。  NOの場合は、どこで躓いているのかも述べよ。  YES, NO 以外の返答は認めない。さっさと証明を読んで来い。  補題1.5は たかが0.5ページ程度の分量しかないのだ」



685:132人目の素数さん
17/12/13 00:11:22.23 p08hLjSN.net
>>595
>URLリンク(www.axfc.net)
>なるべく行間が無いように、丁寧に証明を書いたつもりである。
確かに有理数で不連続無理数で微分可能な関数は存在しないですね
どうでもいいですが定理の証明の最後で(a,b)をさらに2/M幅ぐらいに制限しておけば
そのあとの分割って要らないのでは?(L=1)

686:132人目の素数さん
17/12/13 00:18:12.70 Emn1o5My.net
>>622
>どうでもいいですが定理の証明の最後で(a,b)をさらに2/M幅ぐらいに制限しておけば
>そのあとの分割って要らないのでは?(L=1)
あー、言われてみれば確かに。
そうすると、もっと証明が短くなりますね。

687:132人目の素数さん
17/12/13 00:59:00.08 5ixW3ELF.net
>>620
> それから、その証明について、「正しい」と請け合う人は、まだいないよ
証明を読みました
正しいと思います

688:132人目の素数さん
17/12/13 01:02:04.59 UHeINi+7.net
さあ始まるぞ
スレ主の自演攻撃がw

689:132人目の素数さん
17/12/13 07:05:18.51 +Ojks0P8.net
そもそも生活で数学は使わないというのは生活におい
て数学を使おうとしないからであり俺はサイクリング
で微分積分を使うぞ

690:132人目の素数さん
17/12/13 07:07:02.97 +Ojks0P8.net
数学は理系に限らず数学を直接的でも間接的でも使う
職業に就きたいなら必要だし実体験だが身の回りと世
の中で起こるあらゆる出来事の本質を見抜いて論理的
かつ正確に結論を出したり考えて行動するためには数
学的思考力や物理学あるいは化学の高度ではない知識
が役に立つ

691:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/13 07:56:17.30 NkVXzHSd.net
>>621
悪いが、おれはそれには乗らない
反例の方から攻めたいけど、良いかな?
1.”負け犬の遠吠え”とか言っているが、ある新しい定理を思いついたら、既存の定理と組み合わせて、面白いことが言えないかと考えるのは正道だろ
  というか、それをやらないと、本当に定理が正しいとして、折角の成果を取り逃がしてしまうよ
2.確かに、”R-B_f = (リプシッツ不連続な点全体の集合) が可算無限集合であり、
  しかもこれが R の中で稠密であるとすると、「そういう関数は数学的に存在しえない!」”は、反例として考えたが、正しいとしたら面白いことでもある
3.反例に対する正しい理由付けとして、リプシッツ連続は、位相的に広がりを持った概念*)だから、
  ”実際にそういう関数を構成しようとすると、
  ・ 当初予定していた可算無限個の点では |(f(y)-f(x))/(y-x)|=+∞ が成り立つようにできたが、
  それ以外の非常にたくさんの点でも |(f(y)-f(x))/(y-x)|=+∞ が成り立ってしまう”(>>616
  という。それなら、”リプシッツ連続の性質から、稠密なリプシッツ”不”連続な点は増えて、可算から不加算になる”(自己増殖性あり)が、直接導けるってことになるだろ
  *)(参考)
  ”R上の関数におけるリプシッツ連続とは、本来は「区間」の上で定義される概念であり、
  「一点におけるリプシッツ連続」という言葉遣いは見たことが無い。”(>>604
4.ところで、「一点におけるリプシッツ連続」については、”pointwise Lipschitz condition”という用語がある
  例えば、>>285 "** For each 0 < r < 2, f^r satisfies no pointwise Lipschitz condition. Heuer [15]、** For r = 2, f^r is nowhere differentiable and satisfies a pointwise Lipschitz condition on a set that is dense in the reals. Heuer [15]" とか
  検索でも、pointwise Lipschitz condition で山ほどヒットするよ
つづく

692:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/13 07:57:03.02 NkVXzHSd.net
>>628 つづき
5.それで、”リプシッツ連続の性質から、稠密なリプシッツ”不”連続な点は増えて、可算から不加算になる”(自己増殖性あり)が正しいとすると、下記の”Hausdorff dimension zero”などと矛盾するように思うけどね。
  その”自己増殖性”(不正確だが短くこう呼ばせて貰う)は、�


693:ツ算・不加算とは直接は無関係だからね (参考) http://mathforum.org/kb/message.jspa?messageID=5432910 (抜粋) ** f_w is differentiable on a set whose complement has Hausdorff dimension zero. Jurek [4] (pp. 24-25) [4] Bohus Jurek, "Sur la derivabilite des fonctions a variation bornee", Casopis Pro Pestovani Matematiky a Fysiky 65 (1935), 8-27. [Zbl 13.00704; JFM 61.1115.01] It appears that Jurek proves some general results concerning the zero Hausdorff h-measure of sets of non-differentiability for bounded variation functions such that the sum of the h-values of the countably many jump discontinuities is finite (special case: h(t) = t^r for a fixed 0 < r < 1). General "h-versions" of the ruler function seem to appear as examples, and V. Jarnik's more precise results about the Hausdorff dimension of Liouville-like Diophantine approximation results are used. (引用終り) 以上



694:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/13 07:57:25.99 NkVXzHSd.net
>>624
>証明を読みました
>正しいと思います
これは、ひょっとして「ぷふ」さん?
とすると、やばいね。負けそうかな?

695:132人目の素数さん
17/12/13 08:53:49.03 p08hLjSN.net
>>630
違うよ

696:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/13 09:31:35.62 0oj7NQvX.net
>>631
どうもスレ主です。
「ぷふ」さん、どうもありがとう(^^
>違うよ
じゃ、まだ脈はありそうだな(^^

697:132人目の素数さん
17/12/13 14:02:36.38 pDSDyuZn.net
リーマン積分は図形を縦切りして面積を求めルベーグ
積分は横切りして面積を求めるというがそれはルベー
グ積分の構成を明示的に書くと文献によって多少表現
は違うが本質的にはこの式と同じよう被積分関数の値
域を分割して対応する定義域の部分集合の測度と分割
の幅をかけて足して分割を細かくした極限だから任意の集合に対して測度さえ定まれば積分が定まるという
原理

698:132人目の素数さん
17/12/13 17:21:33.48 Emn1o5My.net
>>628
>悪いが、おれはそれには乗らない
>反例の方から攻めたいけど、良いかな?
「実際に反例が構成できて、それが反例になっていることも証明できた」というなら見てやるが、
スレ主がダラダラと書いている「反例のための考察モドキ」には、今後は一切反応しない。
読みはするけど、反応はしない。また、
「わたくしスレ主の直観では、これが反例になっている予感がする(証明はできてない)ので、ぜひそちらで検証してくれ」
といった、証明がついてない「いい加減な要望」も、今後は一切聞き入れない。
スレ主のこのような手法は、俺からの証明が投下されてなかった段階では一理あったが、
証明が投下された今となっては、このような手法は単なる悪あがきであり、「負け犬の遠吠え」だからだ。
反例にこだわるなら、スレ主の手で「証明済み」になっている反例を証明付きで持ってこい。
ただし、今回だけは特別に、その「いい加減な要望」に反応してやる。しかし、これが最後である。

699:132人目の素数さん
17/12/13 17:25:42.62 Emn1o5My.net
>>628
>5.それで、”リプシッツ連続の性質から、稠密なリプシッツ”不”連続な点は増えて、可算から不加算になる”(自己増殖性あり)が
>正しいとすると、下記の”Hausdorff dimension zero”などと矛盾するように思うけどね。
矛盾しない。なぜなら、その論法で矛盾とするためには、「 "自己増殖性" があるならハウスドルフ次元はゼロにならない」
という主張を前提としなければならないが、非可算無限集合で�


700:焜nウスドルフ次元はゼロになりえるので、そんな主張は出ない。 ここでスレ主の論法は破綻する。 はい終了。 これ以上、その例を引き合いに出して反例としたいなら、実際に反例になっていることをスレ主の手で厳密に証明してから持ってこい。 そうでない発言、すなわち、「ダラダラと考察モドキを書き連ねているだけ」の負け犬の遠吠えには、今後は一切反応しない。 そして、例の pdf の話に戻るが、この程度の pdf から逃げ回るなんて許さない。実質的には「補題1.5」と「定理1.7」しか 内容が無いシンプルな pdf なのだ。その部分は目測では2ページ分くらいしかない。>>622で指摘があった短縮案を加味すると、 さらにもう少し証明がシンプルになる。そのような、「たった2ページ」の証明から逃げ回るなんて言語道断である。 しかも、書いた本人がここに居て、何でも質問できるというのに。 改めて、まずは補題1.5から質問する。 「補題1.5 は理解できたか?YESかNOかで答えよ。  NOの場合は、どこで躓いているのかも述べよ。  YES, NO 以外の返答は認めない。さっさと証明を読んで来い。」



701:132人目の素数さん
17/12/13 17:28:53.93 Emn1o5My.net
本題からは逸れるが、↓のレスにも返答しておく。
>4.ところで、「一点におけるリプシッツ連続」については、”pointwise Lipschitz condition”という用語がある
その言葉は知っている。しかし、その言葉は
pointwise Lipschitz "continuous"
ではない。わざわざ
pointwise Lipschitz "condition"
と書いてある。依然として、「一点におけるリプシッツ連続」という言葉遣いは見たことがない。
どうしても「一点におけるリプシッツ連続」に相当する言葉を使いたいなら、
スレ主が指摘した pointwise Lipschitz condition を使った方が誤解が少ないので、そちらを推奨する。
日本語なら
「一点におけるリプシッツ条件」
とでも書くべきか。

702:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/13 17:55:41.82 0oj7NQvX.net
>>634-636
どうもスレ主です。
>そうでない発言、すなわち、「ダラダラと考察モドキを書き連ねているだけ」の負け犬の遠吠えには、今後は一切反応しない。
はい、はい。
そうしてもらえると助かるよ。
おれは、”この定理が、正しい”という確信を得るために、
この定理が他の定理との組み合わせや、あるいは他の定理と矛盾しないかを、考えている。
その過程で、リプシッツ連続や、”pointwise Lipschitz condition”についての理解も深まるだろう
”正しいという確信”が得られてから、きちんと証明を読みたいね。そうしないと、徒労だろ?
まあ、その前に、現状一人「証明を読みました 正しいと思います」(>>624)というご意見があるが、
セカンドオピニオンを求めたいね。
1.「その定理は、すでに〇〇がxxに書いている」(あるいはその簡単な系)という情報が得られるか
2.「その定理は、既存のxxと矛盾する」という情報(あるいは意見)が得られるか
そのどちらかを、期待しているのだがね
あるいは、大学の教員レベルの人のご意見が、投下されるとか
「ぷふ」さんのご意見も、期待しているよ
まあ、「その証明は、正しい」という意見が、圧倒的に多くなれば、頭を切り替えないといけないかも知れないが
まだ、その段階にあらずと思うので、悪しからず
これから、他の人の意見も出てくると思うので、乞うご期待

703:132人目の素数さん
17/12/13 17:59:16.87 Emn1o5My.net
>>637
>”正しいという確信”が得られてから、きちんと証明を読みたいね。そうしないと、徒労だろ?
「たかが2ページの証明」に徒労もクソもない。
・ たった2ページの証明から逃げ回り、
・ 反例モドキの考察を、膨大なコピペとともにダラダラと続ける
というスレ主の行為の方が遥かに徒労である。
そして、こちらで強制的に補題1.5 の話を続ける。
―――――――――――――――――――――――――
f:R→R と x∈R は limsup[y→x] |(f(y)-f(x))/(y-x)|<+∞ を満たすとする。
このとき、limsup[y→x] |(f(y)-f(x))/(y-x)|< N を満たす正整数 N が取れる。
limsup[y→x] |(f(y)-f(x))/(y-x)|= inf[δ>0] sup[0<|y-x|<δ]|(f(y)-f(x))/(y-x)|
に注意して、inf[δ>0] sup[0<|y-x|<δ]|(f(y)-f(x))/(y-x)|< N ということになるので、
あるδ>0に対して sup[0<|y-x|<δ]|(f(y)-f(x))/(y-x)|< N である。
―――――――――――――――――――――――――
ここまでの議論は理解しているか?YESかNOかで答えよ。
NOの場合は、どこで躓いているのかも述べよ。

704:132人目の素数さん
17/12/13 18:02:12.49 bAjiZ1ZL.net
おっちゃんです。
見に来ました。何かよく分からないけど、元が私の間違いにあって、
私のせいで厄介なことになってしまったのかな。
それじゃ、おっちゃん寝ます。

705:132人目の素数さん
17/12/13 19:23:13.02 UHeINi+7.net
>>630 >>631 >>632
スレ主自演全開w
予告した通りになったw
>さあ始まるぞ
>スレ主の自演攻撃がw

706:132人目の素数さん
17/12/13 19:29:18.56 UHeINi+7.net
>>637を要約すると
「私は馬鹿


707:なので数学が理解できません」 ↑ならROMってろよw



708:132人目の素数さん
17/12/13 19:33:18.81 UHeINi+7.net
>>”正しいという確信”が得られてから、きちんと証明を読みたいね。そうしないと、徒労だろ?
>「たかが2ページの証明」に徒労もクソもない。
ワロタ
どんだけ努力が嫌いなんだよw
そんなだからいつまで経っても大学一年一学期の数学すら理解できないんだよw

709:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/13 21:33:36.05 NkVXzHSd.net
>>640-642
最下位の腰巾着、必死だな(^^
あんたには、”成りすまし疑惑”を言い立てるしか、救いがないんだろ。がんばれよ(^^

710:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/13 21:33:58.50 NkVXzHSd.net
>>639
おっちゃん、どうも、スレ主です。
おっちゃんには、なんの責任もないし、無関係だよ
だが、レスありがとう

711:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/13 21:34:51.93 NkVXzHSd.net
>>638
ID:Emn1o5Myさん、どうも。スレ主です。
あなたには、お礼を言いたい。なかなか、面白い定理と証明とを提供してくれたことを
お陰で、リプシッツ連続について、いろいろ勉強させてもらった。いまも勉強中だが
その定理の正否は、皆さんが、コメントしてくれるだろう。
「読んでみたい」(>>577)と言った「ぷふ」さんも居るし
まあ、私見では、定理は成立しないと思うが、その証明はあなたのレベルの高さをしめしていると思う。
ピエロよりは、はるかにレベルが高いね。
人違いしてすまなかったね
まあ、繰返すが、定理の成立に自信があるなら、静かに待てば良い。
正しければ、皆さんが、賛意を示してくれるだろう

712:132人目の素数さん
17/12/13 21:41:21.53 UHeINi+7.net
>>645
>「読んでみたい」(>>577)と言った「ぷふ」さんも居るし
>>577は一言も「ぷふ」と言ってないのに何でぷふだとわかるの?
自分で「自演してます」と言ってるも同然だと気付かないの?っぷ

713:132人目の素数さん
17/12/13 21:42:56.50 UHeINi+7.net
>>625
いくら他人を最下位呼ばわり、腰巾着呼ばわりしたところで
自演を正当化できないぞ?w

714:132人目の素数さん
17/12/13 21:45:30.31 Emn1o5My.net
>>645
賛意は既に2つある。>>622>>624である。>>622は明確に「正しい」とは述べていないが、
定理1.7の証明の短縮案を提示しているので、明らかに定理1.7の証明を理解しており、
なおかつ間違いの指摘がないので、実質的には賛意を示しているのと同じである。
また、賛意の多さは問題ではない。
スレ主が理解しないことが問題なのである。なんたって、
>まあ、私見では、定理は成立しないと思うが、その証明はあなたのレベルの高さをしめしていると思う。
未だにこんなことを言っているのだからな。そして、こんなことを言うからには、
スレ主には pdf の証明を理解してもらう。逃げることは許さない。たった2ページの証明なのだ。

715:132人目の素数さん
17/12/13 21:46:34.06 +Ojks0P8.net
Πανδώρα

716:132人目の素数さん
17/12/13 21:47:45.73 Emn1o5My.net
>>645
まずは補題1.5から始める。
補題1.5は、実質的には 0.5ページ 程度の分量しかない。その内容も、
limsup の定義に沿って基本的なε-δ論法を展開するだけである。
この程度の内容が読めないわけがないし、この程度の内容に徒労もクソもない。
さらに、
・ もしこの補題に間違いが見つかったら、その時点でスレ主に軍配が上がる。
・ もしこの補題に間違いが無いことが分かったなら、スレ主は定理の証明に向けて一歩前進したことになる。
つまり、たった 0.5ページ の議論で、どちらに転んでも話が「本質的に」前進する。
にも関わらず、なぜスレ主は補題1.5から逃げ回るのか?

では、補題1.5の話を始める。まずは前半部分から。
―――――――――――――――――――――――――
f:R→R と x∈R は limsup[y→x] |(f(y)-f(x))/(y-x)|<+∞ を満たすとする。
このとき、limsup[y→x] |(f(y)-f(x))/(y-x)|< N を満たす正整数 N が取れる。
limsup[y→x] |(f(y)-f(x))/(y-x)|= inf[δ>0] sup[0<|y-x|<δ]|(f(y)-f(x))/(y-x)|
に注意して、inf[δ>0] sup[0<|y-x|<δ]|(f(y)-f(x))/(y-x)|< N ということになるので、
あるδ>0に対して sup[0<|y-x|<δ]|(f(y)-f(x))/(y-x)|< N である。
―――――――――――――――――――――――――
補題1.5のうち、ここまでの議論については理解しているのか?
YESかNOかで答えよ。NOの場合は、どこで躓いているのかも述べよ。

717:132人目の素数さん
17/12/13 21:50:31.95 +Ojks0P8.net
يعقوب

718:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています


最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch