17/11/30 22:26:41.55 IqNIthYM.net
<追加>
(これはピエロのPDF紹介でGJ!(^^ )
URLリンク(pdfs.semanticscholar.org)
The Mathematics of Coordinated Inference: A Study of Generalized Hat Problems (Developments in Mathematics) 2013 edition
by Hardin, Christopher S., Taylor, Alan D. (2013) Hardcover
Springer Verlag
上記の引用文献で
URLリンク(www.jointmathematicsmeetings.org)
[HT09] Christopher S. Hardin and Alan D. Taylor. Limit-like predictability for discontinuous functions. Proceedings of the AMS, 137:3123-3128, 2009.
55:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 22:27:10.78 IqNIthYM.net
<テンプレ追加の追加>
スレ45 スレリンク(math板:470番)
470 自分:現代数学の系譜 工学物理雑談 古典ガロア理論も読む[sage] 投稿日:2017/11/06(月) 00:03:28.04 ID:1Au30FRy [4/13]
(抜粋)
ピエロ必死だな(^^
>無限帽子の問題の解法も凄まじい
>無限列のどの人も、自分の前方(数が増える方向が前)の帽子を見ただけで
>有限人数を除いて、自分の帽子の色が当てられるのだから
>「独立だから予測できるわけない」という人にとって直接的なダメージ
そうでもないよ(^^
無限帽子の問題は、いろんなバリエーションがあって、いちいちフォローしていないが
1例で、>>344の URLリンク(logicpuzzle.seesaa.net) 囚人と帽子クイズ(無限バージョン)論理パズルで楽しく脳トレ 2012年07月23日
について、私なりの解説をすれば、自分の帽子は見えないけれど、自分以外の全員の帽子は見えているわけだ
それで、例の有限個のみ違う同値類の代表元に、”自分以外の人の見える情報”が反映されていると理解すればいいわけだ
いわば、代表元があたかも鏡のように、但し自分とある有限個のみ写らない鏡があると思えば良いんじゃないかな?
つづく
56:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 22:27:46.93 IqNIthYM.net
>>50 つづき
45 スレリンク(math板:471番)
471 現代数学の系譜 工学物理雑談 古典ガロア理論も読む 20171106
で、むしろ時枝記事に近いのは、君が>>295(>>304)で紹介した下記の方が、時枝に近いだろう
ここでは、任意の関数f(x)の任意の貴方の選ぶ1点(”You pick an x ∈ R”)を、” whatever f Bob picked, you will win the game with probability 1!”、”it’s arbitrary: it doesn’t have to be continuous or anything”の条件で当てられるとあるよ
N⊂Rだから、”You pick an n ∈ N”とすれば、時枝記事の場合を含むことになろう
で、時枝記事のように、どこの箱が当たるか分らず、また確率99/100に対して、これは自分で選んだxであり、”with probability 1!”だから、こちらの解法がよほど優れている
URLリンク(xorshammer.com)
SET THEORY AND WEATHER PREDICTION XOR’S HAMMER Some things in mathematical logic that I find interesting WRITTEN BY MKOCONNOR Blog at WordPress.com. AUGUST 23, 2008
(抜粋)
Here’s a puzzle:
You and Bob are going to play a game which has the following steps.
1)Bob thinks of some function f: R → R (it’s arbitrary: it doesn’t have to be continuous or anything).
2)You pick an x ∈ R.
3)Bob reveals to you the table of values {(x0, f(x0))| x0 ≠ x } of his function on every input except the one you specified
4)You guess the value f(x) of Bob’s secret function on the number x that you picked in step 2.
You win if you guess right, you lose if you guess wrong. What’s the best strategy you have?
This initially seems completely hopeless: the values of f on inputs x0 ≠ x have nothing to do with the value of f on input x, so how could you do any better then just making a wild guess?
In fact, it turns out that if you, say, choose x in Step 2 with uniform probability from [ 0,1 ], the axiom of choice implies that you have a strategy such that, whatever f Bob picked, you will win the game with probability 1!
つづく
57:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 22:28:15.89 IqNIthYM.net
>>51 つづき
スレ45 スレリンク(math板:472番)
472 自分返信:現代数学の系譜 工学物理雑談 古典ガロア理論も読む[sage] 投稿日:2017/11/06(月) 00:05:26.40 ID:1Au30FRy [6/13]
The strategy is as follows: Let ~ be the equivalence relation on functions from R to R defined by f ~ g iff for all but finitely many y, f(y) = g(y). Using the axiom of choice, pick a representative from each equivalence class.
In Step 2, choose x with uniform probability from [ 0,1 ].
When, in step 3, Bob reveals {(x0, f(x0)) | x0 ≠ x }, you know what equivalence class f is in, because you know its values at all but one point. Let g be the representative of that equivalence class that you picked ahead of time. Now, in step 4, guess that f(x) is equal to g(x).
What is the probability of success of this strategy
58:? Well, whatever f that Bob picks, the representative g of its equivalence class will differ from it in only finitely many places. You will win the game if, in Step 2, you pick any number besides one of those finitely many numbers. Thus, you win with probability 1 no matter what function Bob selects. (引用終り)
59:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 22:29:07.23 IqNIthYM.net
>>52 つづき
スレ45 スレリンク(math板:473番)
473 自分返信:現代数学の系譜 工学物理雑談 古典ガロア理論も読む[sage] 投稿日:2017/11/06(月) 00:08:48.04 ID:1Au30FRy [7/13]
先に私の見解を書いておくが、ピエロくんの紹介してくれた >>312 PDF が参考になるね(^^
The Mathematics of Coordinated Inference: A Study of Generalized Hat Problems (Developments in Mathematics) 2013 edition by Hardin, Christopher S., Taylor, Alan D.
これで、上記とちょっと違って、7章”The Topological Setting”とかなっていて、さすがに上記は、まずいということらしい。(^^
例えば、
P9
”In Chapter 7 we start to move further away from the hat problem
metaphor and think instead of trying to predict a function's value at a
point based on knowing (something about) its values on nearby points. The
most natural setting for this is a topological space and if we wanted to
only consider continuous colorings, then the limit operator would serve as
a unique optimal predictor. But we want to consider arbitrary colorings.
Thus we have each point in a topological space representing an agent and
if f and g are two colorings, then f ≡a g if f and g agree on some deleted
neighborhood of the point a. It turns out that an optimal predictor in this
case is wrong only on a set that is "scattered" (a concept with origins going
back to Cantor). Moreover, this predictor again turns out to be essentially
unique, and this is the main result in Chapter 8.”
などとある
さすれば、時枝もそのままじゃ(Topologicalな条件を加えないと)、成り立たないと思うがどう?(^^
以上
60:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 22:30:26.06 IqNIthYM.net
>>53 関連
スレ45 スレリンク(math板:540番)
540 返信:現代数学の系譜 工学物理雑談 古典ガロア理論も読む[sage] 投稿日:2017/11/07(火) 14:31:03.11 ID:/DwZQaZ/ [1/5]
>>537 追加
追加でしっかり書いておくよ~(^^
<言いたいことは、結論を言えば、XOR’S HAMMERも、Sergiu Hart氏・時枝も、全部パズルなんだよね>
1.名前を付けよう
1)下記、XOR’S HAMMERのYou and Bobのpuzzleを、任意関数の数当て解法としよう。
記 (>>471より)
URLリンク(xorshammer.com)
SET THEORY AND WEATHER PREDICTION XOR’S HAMMER Some things in mathematical logic that I find interesting WRITTEN BY MKOCONNOR Blog at WordPress.com. AUGUST 23, 2008
(抜粋)
Here’s a puzzle:
You and Bob are going to play a game which has the following steps.
2)Sergiu Hart氏のpuzzle及び時枝記事(>>17-24より)の解法を、加算無限個数列の数当て解法としよう
Sergiu Hart氏のPDF URLリンク(www.ma.huji.ac.il) (>>46より)
つづく
61:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 22:31:11.80 IqNIthYM.net
>>54 つづき
スレ45 スレリンク(math板:541番)
541 返信:現代数学の系譜 工学物理雑談 古典ガロア理論も読む[sage] 投稿日:2017/11/07(火) 14:31:53.21 ID:/DwZQaZ/ [2/5]
2.任意関数の数当て解法は、射程として、可算無限個数列の数当て解法を含んでいるんだ。それを示そう
1)XOR’S HAMMERの任意関数の数当て解法は、”In Step 2, choose x with uniform probability from [ 0,1 ].”で、”Thus, you win with probability 1 no matter what function Bob selects.”なのだから
2)やり方は、>>483に書いたように、時枝の可算無限個との対応は、1/1,1/2,1/3,・・・1/n,・・・とすれば、全て[0,1]内の実数と対応がつく
3)数列 s = (s1,s2,s3 ,・・・,sn,・・・)から、
f(1)=s1,f(1/2)=s2,f(1/3)=s3 ,・・・,f(1/n)=sn,・・・となる関数f(x)を作れば良い。
関数はなんでも良いので、簡単に例えばf(1/2)とf(1/3)とを直線で結ぶ
これで、時枝の可算無限個を、関数に埋め込めたので、XOR’S HAMMERの任意関数の数当て解法が適用できる
3)”you”は、好きな”1/n”を選べば、XOR’S HAMMERの任意関数の数当て解法で、当たる確率1だ
つづく
注)ここ、「“with uniform probability from [ 0,1 ].”を除いて、もとの問題設定通り、任意にxを選べるとすれば、」とするのが正確だったね。
“with uniform probability from [ 0,1 ].”だと、任意にxを選べないから。(^^
62:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 22:32:09.79 IqNIthYM.net
sage
63:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 22:32:29.83 IqNIthYM.net
sage
64:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 22:32:35.74 IqNIthYM.net
>>55 つづき
スレ45 スレリンク(math板:542番)-543
542 返信:現代数学の系譜 工学物理雑談 古典ガロア理論も読む[sage] 投稿日:2017/11/07(火) 14:32:59.93 ID:/DwZQaZ/ [3/5]
3.さて、XOR’S HAMMERの任意関数の数当て解法が、関数論の数理に反していることは明白だ
”Bob thinks of some function f: R → R (it’s arbitrary: it doesn’t have to be continuous or anything).”(>>471より)
なのだから、解析関数でもなく、まして、連続でもない関数の値f(a)は、a以外の点の関数値が分かったところで、関数値f(a)は決まらない
だから、XOR’S HAMMERの任意関数の数当て解法は、数理ではなくパズルであって、「選択公理と同値類を使えば、こんな奇妙は結論がもっともらしく見える」というところが面白いのだ
4.で、Sergiu Hart氏・時枝も、同じ
543 名前:現代数学の系譜 工学物理雑談 古典ガロア理論も読む[sage] 投稿日:2017/11/07(火) 14:33:27.64 ID:/DwZQaZ/ [4/5]
5.で、言いたいことは、「なんで、XOR’S HAMMERの任意関数の数当て解法が不成立なのか?」、「なぜ、成立するように見えるのか?」、そこを見抜けと(^^
6.それ(XOR’S HAMMER)が見抜けないようでは、Sergiu Hart氏・時枝のパズルは分からんだろう。逆に、見抜ければ、分かるようになるだろう(^^
以上
65:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 22:33:10.84 IqNIthYM.net
>>58 つづき
スレ45 スレリンク(math板:544番)
544 返信:現代数学の系譜 工学物理雑談 古典ガロア理論も読む[sage] 投稿日:2017/11/07(火) 14:40:22.74 ID:/DwZQaZ/ [5/5]
>>543 追記
そうそう、書き忘れたが、
時枝で、100列作るでしょ(>>19より)
その各列に、>>541で書いたように、
XOR’S HAMMERの任意関数の数当て解法を適用すれば
任意の100個の箱の数が、確率1で当たります(^^
n列作れば、任意のn個の箱が、確率1で当たります(^^
もし、XOR’S HAMMERの任意関数の数当て解法が正しいなら
Sergiu Hart氏のpuzzle及び時枝記事の加算無限個数列の数当て解法なんて、ゴミでしょ(^^
だから、この点からも、XOR’S HAMMERの任意関数の数当て解法は、パズルに過ぎないと分かる(^^
66:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 22:33:48.09 IqNIthYM.net
>>59 関連
スレ45 スレリンク(math板:612番)
612 自分返信:現代数学の系譜 工学物理雑談 古典ガロア理論も読む[sage] 投稿日:2017/11/08(水) 20:47:56.88 ID:V2sC1YiM [2/2]
(抜粋)
えーと、時枝の前に、まず、>>471-472の”XOR’S HAMMERの任意関数の数当て解法”(>>540)をやろう!
”XOR’S HAMMERの任意関数の数当て解法”は、>>541に書いたように、時枝の”加算無限個数列の数当て解法”を含んでいるが
これ、シンプルだ!
なぜなら、”XOR’S HAMMERの任意関数の数当て解法”は、たった1列で、かつ、決定番号を使わない!
一方、同値類 ”the equivalence relation on functions from R to R defined by f ~ g iff for all but finitely many y, f(y) = g(y). ”と、当然選択公理も使うところが共通だから
で、言いたいことは、「なんで、XOR’S HAMMERの任意関数の数当て解法が不成立なのか?」、「なぜ、成立するように見えるのか?」
それ(XOR’S HAMMER)が見抜けないようでは、Sergiu Hart氏・時枝のパズルは分からんだろう?(>>543)
なお、”XOR’S HAMMERの任意関数の数当て解法”には、殆ど証明はついていないことを、念押ししておくよ
で、まず、この”XOR’S HAMMERの任意関数の数当て解法”は、まっとうな数学として成り立っているのか?(Y)、それとも数学を使った単なるパズルなのか?(N) Y or N ? ここからいこう(^^
追伸
ウソつきサイコパスのピエロと、落ちこぼれおじさんの ID:sCT94ejW は、無視しような(^^
67:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 22:34:21.57 IqNIthYM.net
>>60 関連
スレ45 スレリンク(math板:666番)-668
666 名前:132人目の素数さん[sage] 投稿日:2017/11/10(金) 15:53:55.09 ID:lx5+65qp [6/9]
関数f:S→Rについてあるx∈Sを選んでf(x)の値を当てる件について
1. Sが有限集合の場合
→当てる方法なし
2. Sが可算無限集合の場合
→fと有限個のxで値が異なるだけのgをfと同値とする同値関係を定義し
同値類の代表元f'をとれば、x∈Sについてf(x)=f'(x)となる確率は
1に限りなく近くなる (*有限加法性が成り立つS上の測度で考える)
3. Sが区間[0,1]の場合
→fと上記区間内の測度0の集合上のxで値が異なるだけのgを
fと同値とする同値関係を定義し同値類の代表元f'をとれば、
x∈Sについてf(x)=f'(x)となる確率は1 (区間[0,1]上の測度で考える)
上記のいずれの場合もS→R上の測度で考えるわけではない
つづく
68:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 22:35:58.71 IqNIthYM.net
>>61 つづき
45 スレリンク(math板:667番)-668
667 返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2017/11/10(金) 17:20:10.32 ID:FAWGl2WG [6/9]
>>666
それの3.の場合で
(>>471より)
"In fact, it turns out that if you, say, choose x in Step 2 with uniform probability from [ 0,1 ]"
は、飛ばして、「fと上記区間内の測度0の集合上のxで値が異なるだけのgを」に折り込んじゃったわけ?
えーと、代表を選ぶ話もあったけど、省いたの?
実に、本質を捉えているので・・、
おれは賛成だけどね・・(^^
668 返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2017/11/10(金) 17:24:57.03 ID:FAWGl2WG [7/9]
>>667 補足
まあ、(>>471の)数当ての本質は、それなんだわ(^^
以上
69:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 22:36:33.17 IqNIthYM.net
>>62 関連
スレ45 スレリンク(math板:767番)
767 自分返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2017/11/11(土) 11:18:50.66 ID:nimHTkvQ [11/25]
>>666 戻る
"関数f:S→Rについてあるx∈Sを選んでf(x)の値を当てる件について
(抜粋)
3. Sが区間[0,1]の場合
→fと上記区間内の測度0の集合上のxで値が異なるだけのgを
fと同値とする同値関係を定義し同値類の代表元f'をとれば、
x∈Sについてf(x)=f'(x)となる確率は1 (区間[0,1]上の測度で考える)"
これは、これで良いが
これだと、関数の数当てとしては、完全にトリビアで、数学的に無価値だろ?
(>>472より)”When, in step 3, Bob reveals {(x0, f(x0)) | x0 ≠ x }, you know what equivalence class f is in, because you know its values at all but one point. ”
なのだから(^^
70:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 22:36:58.70 IqNIthYM.net
>>63 関連
スレ45 スレリンク(math板:819番)-820
819 自分返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2017/11/11(土) 18:36:13.23 ID:nimHTkvQ [22/25]
>>817 補足
(>>767より)
"関数f:S→Rについてあるx∈Sを選んでf(x)の値を当てる件について
(抜粋)
3. Sが区間[0,1]の場合
→fと上記区間内の測度0の集合上のxで値が異なるだけのgを
fと同値とする同値関係を定義し同値類の代表元f'をとれば、
x∈Sについてf(x)=f'(x)となる確率は1 (区間[0,1]上の測度で考える)"
(>>472より)”When, in step 3, Bob reveals {(x0, f(x0)) | x0 ≠ x }, you know what equivalence class f is in, because you know its values at all but one point. ”
なのだから、x0を一つやれば、Bobのf(x)は、x0 以外全部分るんだ(^^
(>>471より)"In fact, it turns out that if you, say, choose x in Step 2 with uniform probability from [ 0,1 ]"
だったでしょ?
簡単な話で、”choose x in Step 2 with uniform probability from [ 0,1 ]”だから、 Gameを、[ 0,1 ]の0から初めて1に達するまで、続ける
x=0のときに、Bobのf(x)が分って、同値類が分って、代表f'(x)が決まる。あとを続ければ、Δf = f(x)-f'(x) は、”定義の通り” [ 0,1 ]では有限個しか不一致がないんだ
それだけのこと。つまり、x=0のときに、代表f'(x)が決まるから、あとはどこで有限個が外れるか、その時点で全て分るわけさ!! (^^
これだと、関数の数当てとしては、完全にトリビアで、数学的に無価値だろ? (^^
つづく
71:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 22:37:28.26 IqNIthYM.net
>>64 つづき
820 自分返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2017/11/11(土) 18:45:58.31 ID:nimHTkvQ [23/25]
>>819 補足の補足
もっとはっきり言えば、それやっていることは
1.x=0のときに、Bobのf(x)が分ってから、f(x)と有限個のみ違うg(x)を作る
2.g(x)から、有限個のみ違うf’(x)を作る。これを代表とする
3.代表f’(x)は、固定で、0以外も全部これを使う
4.つまりは、数学的には、Bobのf(x)をカンニングして代表f’(x)を作っているってことだ
5.だったら、当たるのは当たり前でしょ(^^
以上
72:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 22:38:24.87 IqNIthYM.net
>>65 関連
スレ45 スレリンク(math板:827番)
827 自分:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2017/11/11(土) 21:47:34.10 ID:nimHTkvQ [24/25]
>>821 >>825
おまえら、笑える(^^
(>>667で、おれ)
(抜粋)
"In fact, it turns out that if you, say, choose x in Step 2 with uniform probability from [ 0,1 ]"
は、飛ばして、「fと上記区間内の測度0の集合上のxで値が異なるだけのgを」に折り込んじゃったわけ?
実に、本質を捉えているので・・、
おれは賛成だけどね・・(^^
(引用終り)
(で、サイコパスのピエロ)
>>671 名前:132人目の素数さん[] 投稿日:2017/11/10(金) 17:40:22.06 ID:lx5+65qp [8/9]
>>667
>” choose x in Step 2 with uniform probability from [ 0,1 ]" は、飛ばして
自明なことでも書かれてないと意識できないほど
馬鹿な畜生には数学は無理 諦めろ
(引用終り)
だったろ? これの言い訳でも考えろよ! サイコパスのピエロ!! 自分が、書いたことを忘れたんだろ? サイコパスだから・・(^^
73:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 22:38:52.48 IqNIthYM.net
なお、時枝記事が成立するという立場の方は、下記へどうぞ。(いまさら、「成立する」という人も居ないと思いますが)
28 (High level people が自分達で勝手に立てた時枝問題を論じるスレ) スレリンク(math板)
繰返しますが、
前39 で、数学セミナー時枝記事は終わりました。39は、別名 数学セミナー時枝記事の墓と名付けます
ここは、現代数学のもとになった物理工学の雑談スレとします。たまに、“古典ガロア理論も読む”とします
それで良ければ、どうぞ
時枝記事は、気が向いたら、たまに触れますが、私スレ主の気ままです
時枝記事“成立”の立場からのカキコや質問は、基本はスルーします。コピペで流します。たまに、忘れたころに取り上げます
74:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 22:39:15.79 IqNIthYM.net
以上、取り敢ず新スレを立てました
雑談希望の方は、どうぞ!(^^
75:132人目の素数さん
17/11/30 22:47:04.81 amV/ftIW.net
>>1
こいつ錯乱してる?
何言ってるのかわからん
76:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 22:51:45.60 IqNIthYM.net
(前スレよりのつづき)
46 スレリンク(math板:692番)
692 名前:BLACKX ◆jPpg5.obl6 [sage] 投稿日:2017/11/30(木) 22:16:25.17 ID:3HHJYmiv [2/2]
遅くなりました。
(原; URLリンク(www.math.nagoya-u.ac)~~だけ見て名古屋大の原さんって言ってましたすみません
整数の分割の方の参考書でつまずいています。
P53ロジャースラマジャンの第1恒等式の論法を参考に全単射の分割を定めnに対しての和因子への分割を定めた後、
分割を事象順に整列させ母関数へと導出している最中にふとn対和因子の関係を自己反転原理で全単射以外の方法で確かめると違和感があった。
そのまま母関数の部分分数分解の代数的操作をしようにも
違和感があった。そのままマクローリーン展開をすると意味がない式となり分割の不正か事象順の再整列が不正であることが確信に変わった。
しかし、全単射法で事象を処理しようとしたのはラマジャン系かガルシア系のみです。
全単射で無いものでのフェラーズ盤からとなるとバカな僕には何も思いつきませんでした。以上です。
77:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 22:53:34.52 IqNIthYM.net
(前スレよりのつづき)
46 スレリンク(math板:666番)
666 名前:BLACKX ◆jPpg5.obl6 [sage] 投稿日:2017/11/30(木) 01:24:04.31 ID:3HHJYmiv [1/2]
はじめまして
喧嘩している所申し訳ありませんが、名古屋大の原先生の主張する標本空間について詳しい方はいらっしゃいますでしょうか?
今日初めて原先生の資料を見て...
私は整数の分割と素数夜曲という参考書を元に確率の事象を求めていますが、自己反転原理?により因子分割を誤ったと考えられますが、全単射の分割以外から求める方法はありますか?
78:132人目の素数さん
17/11/30 22:59:25.92 u/shO/Uo.net
>>69
自演がバレて錯乱しちゃったのかもね
しかし何で新スレ立てたんだろう? 恥かくだけなのに
アホの考えてることはわからんw
79:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 23:10:24.94 IqNIthYM.net
>>70-71
BLACKX ◆jPpg5.obl6さん、どうも。スレ主です。
えーと
1.”URLリンク(www.math.nagoya-u.ac)<)
で、面倒を見て貰った方がよさそうだね~(^^
80:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 23:11:49.57 IqNIthYM.net
>>72
ぷ
自演自演か(^^
唯一の救いをそこに求めるのかね(^^
哀れだな(^^
「ぷふ」さん
一言お願いしますよ(^^
81:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 23:14:40.91 IqNIthYM.net
まあ、そう慌てないで
ちょっと待ちなさいよ
「ぷふ」さんが来て
きっと、君たちにほほえんでくれるよ(^^
”ぷ”とか
”哀れ”とかね(^^
82:132人目の素数さん
17/11/30 23:16:15.94 u/shO/Uo.net
やっぱり錯乱してるw
83:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 23:44:07.15 IqNIthYM.net
落ちこぼれ素人三人衆の最下位の人かな?(^^
84:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 23:46:06.90 IqNIthYM.net
わらかしてくれるじゃない。自演自演か(^^
まあ、そこに救いを求めるしかないんだね
だが、残念ながら、そこに救いはないよ
時間が経てば判ることだがね(^^
85:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/30 23:48:26.09 IqNIthYM.net
まあ、数学というのは、正しい方が、圧倒的に有利なんだ
時間が経てば経つほど有利になる。賛同する人が増える
で、「ぷふ」さんが来たってわけ
残念でしたね(^^
86:BLACKX
17/11/30 23:49:54.99 3HHJYmiv.net
参考書は2冊で進めています。今回は「整数の分割」より
1.あ、恥ずかしい。ごめんなさい 確率論 I, 確率論概論 IのPDFです
2.定義 1.1.1 (標本点と標本空間,有限バージョン) 一回の実験の結果として起こりうるものを根元事象または標本
点と呼ぶ.標本点の全体からなる集合を標本空間(sample space)Ω と言う.
3.整数の分割 ジョージ・アンドリュース,キンモ・エリクソン著 訳:佐藤文広 のP53~
4.ラマジャン恒等式では違和感があった為、全単射を必要としない母関数の導出をP58~を参考に行いました。
87:132人目の素数さん
17/11/30 23:50:38.20 Hnsod6az.net
そのぷって人、前スレで論破されてます笑
88:132人目の素数さん
17/11/30 23:56:30.34 Hnsod6az.net
逃げ回るぷ君は語尾にねを付ける癖がある
95 132人目の素数さん sage 2017/11/12(日) 17:57:50.63 ID:hePUuc7P
>>94
> 全く意味がないことばかり書くのね
> 別にx0が毎回変わってもいいよ
> f(x0)以外が開示されているということが重要
> x0が毎回変わろうが変わるまいがf(x0)=g(x0)になる確率は0
予想どおりの回答をありがとう。不正解ですw
なんで不正解か分かりますか?
>>74, 78
> [確認問題]
> 前スレのぷ君の『x=0戦略』を考える。
> 全事象Ω={0}、P(0)=1という自明な確率空間を取ることが出来る。
> すなわちこの問題ではxは確率変数とみなせる。
> fもgも任意であり、事前に与えられているとする。
> このときf(0)=g(0)となる確率は?
260 132人目の素数さん sage 2017/11/18(土) 14:13:33.24 ID:LAjmabkB
自分に見えない数字はみな確率変数であるというのが ぷ君 の持論である
ちなみにぷ君は前スレで
>>>505
>> 無限帽子は何を確立事象と見るかよく考えないと騙されちゃうよ
>
>>>832
>> 確率自称が分かってない
と確立もとい確率事象の見分けに自信がお有りのようだったw
にも関わらず>>95はぷ君には意味が分からないらしい
もっと簡単で誰にでもわかる問題を出そう
スレ主も答えていいぞ笑
ぷ君を援護してやれ
---
目の前に封筒があり、中には6以下の自然数xが書かれたカードが入っている
ぷ君に封筒の中身は見えない
--
さて、ぷ君に質問だ
問1
この自然数xは確率変数か?
確率変数であるというなら証明せよ。
すなわち、xがどのような標本空間と測度で選ばれるのかを一切の仮定なしに示せ
(示せるものなら笑)
問2
ぷ君は箱の中身xが1であると睨んだ
ぷ君お得意のx=1戦略である
この予想が正しい確率を一切の仮定なしに
89:求めよ (求められるものなら笑) 問3 ぷ君はサイコロを振ることにした 出目と封筒の中身が一致する確率を求めよ
90:132人目の素数さん
17/11/30 23:58:35.93 u/shO/Uo.net
>わらかしてくれるじゃない。自演自演か(^^
わらかすも何もIDが一致しちゃったんですけど?
誤魔化し王のお前でもさすがに誤魔化し様が無いのでは?w
>まあ、そこに救いを求めるしかないんだね
で、さっきから救いって何だよ?w
自演までして救いを求めてるのはお前だろうにw
「意見一致しましたね。(^^」とか「同感です(^^」とか「レスありがとう(^^」とか
自分に言ってたやんw 錯乱して忘れちゃったの?w ちゃんと証拠残ってるからw
91:132人目の素数さん
17/12/01 00:04:29.86 3eRbncNW.net
>>79
そのぷふさんって人、時枝問題について一言も語らなかったよw さんざん促したのに頑なにねw
なのに何で自演君の賛同者ってことになってるの?w
しかもぷふって人と自演君のIDが一致しちゃったんですけどw
・・・だめだw こいつ完全に錯乱してるw
92:132人目の素数さん
17/12/01 07:05:38.33 JywycBRV.net
オハヨー、朝です。
(^o^)
93:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 07:45:28.79 JZLrHX1j.net
>>85
これは、「ぷふ」さんかな?
どうも。スレ主です。
新スレ判るかなと心配しましたよ
どうぞ、よろしく
まあ、お手数ですが
落ちこぼれ素人三人衆の相手をお願いしますm(_ _)m
(^^
94:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 07:56:00.75 JZLrHX1j.net
>>80
どうも。スレ主です。
> 1.あ、恥ずかしい。ごめんなさい 確率論 I, 確率論概論 IのPDFです
> 2.定義 1.1.1 (標本点と標本空間,有限バージョン) 一回の実験の結果として起こりうるものを根元事象または標本
> 点と呼ぶ.標本点の全体からなる集合を標本空間(sample space)Ω と言う.
そこは、「原先生の主張する標本空間」>>71ではなく、標準です。多分コルモゴロフ流確率論だな
下記だね
URLリンク(ja.wikipedia.org)
確率空間
(抜粋)
確率空間(かくりつくうかん、英: probability space)とは、可測空間 (S, M) に確率測度 μ(S) = 1 を入れた測度空間 (S, M, μ) を言う。アンドレイ・コルモゴロフによる確率論の公理的構成から、現代においては、確率論は確率空間における確率測度の理論として展開される。
概要
直感的に確率空間とは、確率を議論しようとしている全ての事象について、それらがランダムに発生する要因をすべて集めてきて、個々の要因にたいして確率を与えたものである。この個々の要因のことを根元事象と呼ぶ。確率論においては全てのランダムの原因は根元事象にあって、他の事象のランダムさはこの根元事象から派生したものだと考える。
・
・
・
という無限列全てから成る集合が確率空間となる。このような非可算無限集合の各々の元に確率を割り当てるには測度論の知識が必要となる。このような理由から、現代的な確率論の成立には測度論やルベーグ積分が生まれるまで待たなければ成らなかったのである。一方で、最近では測度論の研究はほとんど確率論の研究と同義になっている。
95:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 08:05:16.45 JZLrHX1j.net
>>87 つづき
> 3.整数の分割 ジョージ・アンドリュース,キンモ・エリクソン著 訳:佐藤文広 のP53~
> 4.ラマジャン恒等式では違和感があった為、全単射を必要としない母関数の導出をP58~を参考に行いました。
あなたは、
分からない問題はここに書いてね438
スレリンク(math板:186番)
186 名前:BLACKX ◆jPpg5.obl6 [sage] 投稿日:2017/11/28(火) 23:16:24.46 ID:FNaKctJX
URLリンク(imgur.com)
整数の分割と言う参考書の
6.10の式の代数操作後の式の代数操作の詳細がわかりません。
どのような操作を行うと操作後の式になりますか。ご教授お願いします。
(引用終り)
で、質問してレスついてないね・・(^^
質問のレベルが高すぎるかも~(^^
で、>>87などを見ると、まっとうな大学数学の教育は終えていないと見た(標準的な確率空間を”原先生の主張”とか*))
ということは、大学数学科なら1~2年レベルか
P53~とP58~と、関連部分をアップしてみて(^^
多分判らんと思うが、考えてみるよ(^^
しかし、時間かかるだろうな・・
注*)余談だが、原隆先生は、九州大の前に名古屋に居たんだ、多分(^^
96:132人目の素数さん
17/12/01 08:54:38.16 3eRbncNW.net
>>86
>これは、「ぷふ」さんかな?
>どうも。スレ主です。
そういう細かい演技要らないからw
いくら演技してもID一致しちゃってますからw
97:132人目の素数さん
17/12/01 09:01:15.46 3eRbncNW.net
↓これが自演君(>>1)の正体です。みなさんご注意下さい
674現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/30(木) 09:39:45.22ID:7ADafBFy
>>673
ぷ
676現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/30(木) 14:13:42.15ID:7ADafBFy>>677>>678>>679>>680
>>675
おっちゃん、どうも、スレ主です。
678現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/30(木) 14:35:20.32ID:7ADafBFy
>>676 補足
おっちゃん、どうも、スレ主です。
98:132人目の素数さん
17/12/01 09:02:56.77 3eRbncNW.net
>>86
>これは、「ぷふ」さんかな?
いえ、自演君ですw
99:132人目の素数さん
17/12/01 09:30:19.34 Gaq1pHvm.net
>>90
ぷ(^^
それ、証明間違っているよ
「ぷふ」さんの定義
”ぷ”と書いた人が、すべて、「ぷふ」さんという定義になっているぞ(^^
なお、IDは変わっているが
「私が、スレ主である!」だ(^^
100:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 09:33:03.71 Gaq1pHvm.net
ありゃ? 新スレで、コテハンとトリップが、抜けた(^^
101:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 10:28:35.35 Gaq1pHvm.net
>>88 関連
”まだカスタマーレビューはありません。”か
BLACKX ◆jPpg5.obl6さん、書いてやりなよ(^^
2006/5か。「原書の発行がいつか?」だが、結構新しいかも
URLリンク(www.amazon.co.jp)
整数の分割 単行本 ? 2006/5 ジョージ・アンドリュース (著),? キムモ・エリクソン (著),? 佐藤 文広 (翻訳) 単行本: 188ページ 出版社: 数学書房
内容(「BOOK」データベースより)
これは整数の分割についての書物である。これまで整数の分割ということを聞いたことがなかったとしても、それがどういう意味かすぐ理解できるだろう。
例えば、3を正整数の和に分割するとして、何通りの分割が可能だろうか。まず、3=3である。次に3=2+1であり、また3=1+1+1でもある。
このまったく初等数学的な考察から、答えは「3の分割は3通りある」となる。整数の分割の理論について書かれた文献は、これまで、すべて数学の専門家向けのものであった。
だが、整数の分割とは何かを知ってみれば、数学の進んだ知識がなくともその研究ができるはずだという、われわれ著者の意見に同感してもらえると思う。本書は、その欠落を埋めるために書かれたのである。
102:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 10:29:16.62 Gaq1pHvm.net
>>94 つづき
ありゃ、こちらは200頁か。水増し?(^^
”原著: INTEGER PARTITIONS by George E. Andrews and Kimmo Eriksson Cambridge U.P.,2004”とあるね
URLリンク(www.sugakushobo.co.jp)
整数の分割 - 数学書房
(抜粋)
ジョージ・アンドリュース,キムモ・エリクソン 著 佐藤文広 訳
A5判・並製・200頁・2800円+税
整数の分割の研究は多くの偉大な数学者を魅了してきた.ちょっと考えるだけでも,オイラー,ルジャンドル,ラマヌジャン,ハーディ,ラーデマッハー,シルベスター,セルバーグ,そしてダイソン等の名が挙がる.彼らはみな,このじつに単純な数学的対象についての高等な理論の発展に貢献した.
目次
第1章 プロローグ
第2章 オイラー、そしてオイラーを超えて
103: 第3章 フェラーズグラフ 第4章 ロジャース-ラマヌジャン恒等式 第5章 母関数 第6章 分割関数についての諸公式 第7章 ガウス多項式 第8章 ダーフィー正方形 第9章 オイラーの恒等式の精密化 第10章 平面的分割 第11章 フェラーズ盤を成長させる 第12章 エピローグ 付録A 無限級数と無限積の収束/B 参考文献/C 演習問題の解答とヒント
104:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 10:30:54.89 Gaq1pHvm.net
>>84
>こいつ完全に錯乱してるw
ぷ(^^
錯乱しているのはお前だよ(>>92)(^^
105:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 10:32:03.62 Gaq1pHvm.net
ぷ(^^
もっとも、”おれが錯乱をさせている” のかもね~(^^
106:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 10:45:57.48 Gaq1pHvm.net
>>95 関連
下記『整数の分割』 佐藤文広 訳が、参考文献かな(^^
”脚注 1^ 伏見康治「確率論及統計論」第I章 数学的補助手段 1節 組合わせの理論 ”か、おい
と言っても分かる人少ないかもね(^^
おっと・・、 URLリンク(ebsa.ism.ac.jp)
確率論及統計論 著者: 伏見 康治 出版社: 河出書房 出版年: 1942年(絶版)
これ、著作権切れで、PDF化されたのか!!(^^
URLリンク(ja.wikipedia.org)
自然数の分割
(抜粋)
数学の各分野、特に数論および組合せ論[1] において、正の整数 n の分割(ぶんかつ、英: partition)あるいは整分割 (integer partition) とは、与えられた正整数 n を正整数の和として表す方法をいう。ただし、和の因子(summand; 被加数)の順番のみが異なる分割は同じ分割とみなされる(順序をも考慮する場合は、順序つき分割または、分割ではなく合成あるいは結合 (composition) と呼ばれる概念となる)。
自然数の分割を図示する方法としてヤング図形やフェラーズ図形がある。これらは数学や物理学のいくつかの分野で用いられるが、特に対称多項式や対称群の研究あるいは一般の群の表現論などが含まれる。
目次 [非表示]
1 例
2 制限つきの分割
3 フェラーズ図形
4 ヤング図形
5 脚注
6 参考文献
7 関連項目
8 外部リンク
脚注
1^ 伏見康治「確率論及統計論」第I章 数学的補助手段 1節 組合わせの理論
URLリンク(ebsa.ism.ac.jp)
参考文献
Andrews, George E. (1976), The Theory of Partitions, Cambridge University Press, ISBN 0-521-63766-X
Andrews, George E.; Eriksson, Kimmo (2004), Integer Partitions (2nd ed.), Cambridge University Press, ISBN 0-521-60090-1
ジョージ・アンドリュース、キムモ・エリクソン 『整数の分割』 佐藤文広 訳、数学書房(出版) 白揚社(発売)、2006年5月。ISBN 978-4-8269-3103-8。 - 注記:原著第2版の翻訳。
(引用終わり)
107:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 10:56:32.81 Gaq1pHvm.net
>>98 関連
英文 en.wikipedia もちらっと見とけよ
大体 英文 en.wikipedia の方が充実しているんだ
えーと、左の Languages English のリンクをぷちっと、クリックするんだよ(^^
URLリンク(en.wikipedia.org)(number_theory)
Partition (number theory)
(抜粋)
Contents [hide]
1 Examples
2 Representations of partitions
2.1 Ferrers diagram
2.2 Young diagram
3 Partition function
3.1 Generating function
3.2 Congruences
3.3 Partition function formulas
3.3.1 Approximation formulas
3.3.2 Other recurrence relations
4 Restricted partitions
4.1 Conjugate and self-conjugate partitions
4.2 Odd parts and distinct parts
4.3 Restricted part size or number of parts
4.3.1 Asymptotics
4.4 Partitions in a rectangle and Gaussian binomial coefficients
5 Rank and Durfee square
6 Young's lattice
7 See also
8 Notes
9 References
10 External links
Notes
1 ^ Andrews 1976, p. 199.
References
Andrews, George E. (1976). The Theory of Partitions. Cambridge University Press. ISBN 0-521-63766-X.
Andrews, George E.; Eriksson, Kimmo (2004). Integer Partitions. Cambridge University Press. ISBN 0-521-60090-1.
108:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 11:14:42.07 Gaq1pHvm.net
>>88 関連
URLリンク(www.math.nagoya-u.ac.jp)
整数の分割を数える 名古屋大学多元数理科学研究科岡田聡一
これは,2006 年度数学アゴラ秋の継続コースの講義録である.
yこの講義録の作成に協力してくれた佐々木義卓,瀧真語の両氏に感謝する.
1第1 回,2006 年11 月4 日15:00 ~ 17:00.
与えられた正整数をいくつかの正整数の和として表す(和の順序は考えない)表
し方を,その正整数の分割という.分割は,対称式をはじめとして数学に現れる
さまざまな対象にラベルをつけるのに利用され,数学や物理学の問題を具体的に
(組合せ論的に)扱う手段の一つとなっている.また,分割の個数を係数とする多
項式やべき級数として得られる関数やそれらの間の関係式は,数学だけでなく数
理物理学など幅広い分野で重要な役割を果たしている.
この講義では,ある条件をみたす分割が何通りあるかを数えるという問題を扱
う.そして,場合の数を個別に考えるのではなく,その場合の数を係数とする多
項式やべき級数(多項式の拡張で形式的に無限和を考えたもの)を考えるという
「母関数」のアイデアを説明する.
URLリンク(www.math.nagoya-u.ac.jp)
社会連携 ■数学アゴラ■ ●2006年度 (続き) 秋の継続コース
1. 趣旨
数学とその応用に興味・関心を持つ高校生・高校教員に対し, 本研究科の数学研究者が継続的に数回の講義を行ない, 最先端の研究にもつながる数学理論をわかりやすく解説する.
2. 講義題目
整数の分割を数える
3. 講師
岡田聡一 (名古屋大学大学院多元数理科学研究科 教授)
12. 講義録/レポート問題
[DOWNLOAD] 講義録 [PDF/255KB] URLリンク(www.math.nagoya-u.ac.jp)
URLリンク(www.math.nagoya-u.ac.jp)
名古屋大学 大学院多元数理科学研究科・理学部数理学科
数学アゴラとは
109:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 11:17:09.99 Gaq1pHvm.net
>>100
>数学とその応用に興味・関心を持つ高校生・高校教員に対し,
高校生といっても、PDFを見ると、数オリ級でないと、ついていけないだろうな(^^
110:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 11:23:43.03 Gaq1pHvm.net
>>95 関連
URLリンク(mathsoc.jp)
書 評 整数の分割 G. W. アンドリュ-ス, K. エリクソン 著 佐藤文広 訳 数学書房 (2006 年, 188 ページ) 徳島大学工学部 水野義紀 - 日本数学会
111:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 11:32:20.99 Gaq1pHvm.net
>>102
こちらの書評の方が詳しいね
しかし、書評が二つか。めずらしいね(^^
URLリンク(www.jstage.jst.go.jp)
書 評 ジョージ・アンドリュース,キムモ・エリクソン(佐藤文広 訳):整数の分割,. 数学書房,2006 年,188 ページ.田川裕之 著 - ?2008 2007/08/30 -
112:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 11:33:35.13 Gaq1pHvm.net
>>102-103
ああ、そうかそうか・・
>>102 が通信の方で、>>103が「数学」誌の方か(^^
113:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 11:43:26.74 Gaq1pHvm.net
>>100 関連
URLリンク(ousar.lib.okayama-u.ac.jp)
整数の分割の母関数と組合せ論 安東雅訓(稚内北星学園大学) 岡山大学審査学位論文 2014
URLリンク(ousar.lib.okayama-u.ac.jp)
著者 安東 雅訓 岡山大学
備考 岡山大学審査学位論文
発行日 2014-03-25
学位授与番号 乙第4419号
学位授与年月日 2014-03-25
学位・専攻分野 博士(理学)
114:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 11:47:34.51 Gaq1pHvm.net
>>80
おーい、BLACKX ◆jPpg5.obl6さん、正誤表があるよ(^^
URLリンク(www2.rikkyo.ac.jp)
『整数の分割』正誤表
ジョージ・アンドリュ?ス, キムモ・エリクソン著. 佐藤文広訳. 数学書房 2006 年発
115:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 11:54:51.62 Gaq1pHvm.net
>>86 補足
>新スレ判るかなと心配しましたよ
>どうぞ、よろしく
昔、このスレのNo10くらいのときに
ガロアすれは、1000まで行かずに、500KBオーバーで終了する(当時。いまでは512KB)ことについて
ある人は、2CHでは「異常だ」と言われた
その理由は
例えば>>94-100辺りのコピペにあるんだが・・・(^^
実際、その後、このNo47まで、一度も1000達成はない!(おい、自慢してどうする(^^ )
なので、旧スレをじっと眺めているだけでは、「終了」が分からないだろうと心配したわけだよ(^^
116:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 11:59:43.23 Gaq1pHvm.net
数学セミナーで、特集があったのか?(^^
記憶に残っていないな~
2017年2月号というと、1月の12日くらいに発売か
まあ、忙しときだったな(^^
”*制限分割の数え上げ……安東雅訓 18”は、上記の人だな(^^
URLリンク(www.nippyo.co.jp)
数学セミナー 2017年2月号
(抜粋)
[特集1]
整数の分割
内容紹介
誰でもわかる素朴な対象ながら、「数論」や「組合せ論」などの奥深い数学へ繋がる「整数の分割」。今回は、インドの天才数学者ラマヌジャンをも魅了した不思議な分割数の世界を覗いてみよう。
特集=整数の分割
*4分割数とは……高瀬幸一 8
*分割数の漸近公式と円周法……金子昌信 14
*制限分割の数え上げ……安東雅訓 18
*ロジャーズ-ラマヌジャン恒等式……山田裕史 23
*シューア分割定理……土岡俊介 28
117:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 12:05:32.25 Gaq1pHvm.net
>>106
おーい、BLACKX ◆jPpg5.obl6さん
あなたのレベルが分からないので、上から目線で悪いが
おそらく、大学数学科で1~2年
で、周囲に『整数の分割』の不明点を教えてもらえるとか、相談できる人がいないと見た
そういう独習環境だと、『整数の分割』1冊じゃ、だめだな
例えば、>>106が出ていて、それに気づかないと、そこに引っかかったら、前に進めなくなるよ
だから、上記のPDFとか、関連の検索箇所(特にwikipediaやそこの引用文献)などを平行して当たるべし(^^
以上
118:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 19:11:54.05 JZLrHX1j.net
>>88
戻る
「分からない問題はここに書いてね438
スレリンク(math板:186番)
(抜粋)
URLリンク(imgur.com)
整数の分割と言う参考書の
6.10の式の代数操作後の式の代数操作の詳細がわかりません。
どのような操作を行うと操作後の式になりますか。ご教授お願いします。」
これね
質問者として、”自分はここまで考えて、ここが判らん”と書くべきと思うよ
質問のレベルが高いこともさることながら
質問者のレベルが見えない場合、”さて、どこから説明したものかな”と、戸惑う場合が多い
”自分はここまで考えて、ここが判らん”と書けば、質問者のレベルも分かり
回答の焦
119:点も絞られるというものだよ(^^ 今後、”分からない問題はここに書いてね”など質問スレを使うこつだよ
120:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 19:40:33.40 JZLrHX1j.net
>>110 つづき
>URLリンク(imgur.com)
>整数の分割と言う参考書の
> 6.10の式の代数操作後の式の代数操作の詳細がわかりません。
>どのような操作を行うと操作後の式になりますか。ご教授お願いします。
で、そんなことは判っていると言われそうだが・・・(^^
ここ、>>100 アゴラ 整数の分割を数える 名古屋大学多元数理科学研究科岡田聡一先生のPDFで
P22
3.2 形式的ベキ級数
の
P24 1/(1-t) とか
P25 1/(1-t)^k とかの
形式的ベキ級数展開を使っていることだけは判った(^^
だから、ここらに乗せるために、6.10式をやめて
分母をそろえて、
1/(1-q)^k (k=1~4)
1/(1-q^k) (k=2~3)
それに
1/(1-q^2)^2
と、公式を使いやすい分母にしたんだな~
だが、そのための部分分数展開の詳細と
その後の2項係数のところは、
分らないんだがね・・(って、それじゃ、だめじゃん・・(^^ )
121:BLACKX
17/12/01 19:44:15.17 45Mtp2vR.net
帰宅しました。
大学はザコなんで伏せるけど理工学部航空科修士過程卒で今はメーカーで社会人5年目してます。
専門は数値流体力学、乱流力学です。広い意味ではなくて特定分野だからバレるのが怖いので伏せます。
だから専門と言ってもそこの会社が大体牛耳っている分野です。
そのため数学はところどころ強かったり無知だったりyoutubeで講義ダイジェストをかじっていたりムラが激しいかと思われますのでご了承ください。
どっから説明しようかな
それで私がやっている計算はLOTO7の組み合わせから見る整数の分割なんだけどスレもあるため大体把握してもらえると思うのでURLだけで割愛致します。
数学的にLOTO7 [無断転載禁止]©2ch.net
スレリンク(math板)
現在私はAir値というLOTOでは独自だと思われる数テープの長さの特徴のモードから区分けを行い途中主張もぶれましたが(虚数部分は無いとする)、Air0-30の値における組み合わせ数と向き合っております。
122:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 19:46:53.64 JZLrHX1j.net
まあ、いま、「整数の分割」を注文したけど、届くまでしばらくかかるらしい
来たら、読んでみるよ(^^
123:BLACKX
17/12/01 20:05:05.31 45Mtp2vR.net
私自身の解き方の何が間違っているかの疑いはLOTOの性質上の不正にあるか私の再整列不正かのどちらかで起こってると考えられます。
そこで確率論のPDFをこのスレで見つけ私のしていることと非常に類似している為読もうと思ったら標本空間が書かれておりあまり理解におよびませんでした。
これからその辺勉強します。
124:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 20:06:10.22 JZLrHX1j.net
>>112
BLACKX ◆jPpg5.obl6さん、どうも。スレ主です。
>大学はザコなんで伏せるけど理工学部航空科修士過程卒で今はメーカーで社会人5年目してます。
それだけで、多分かなり絞れるよ(^^
でも、若いから、まだまだ伸びるよー(^^
BLACKX ◆jPpg5.obl6さん:あだ名は、ブラックさんとか、クロちゃんかな~(^^
まあ、そのうち・・
>専門は数値流体力学、乱流力学です。広い意味ではなくて特定分野だからバレるのが怖いので伏せます。
私も、工学系だけど
大学のときの友人に、ジュウコフスキー変換(複素関数の等角写像)に凝っているやつがいたね~(^^
(参考) URLリンク(izumi-math.jp) メビウス変換とジューコフスキー変換 複素変換を視覚化する 松本睦郎 平成25 年
URLリンク(izumi-math.jp) 松本 睦郎【New!】
URLリンク(izumi-math.jp) 数学のいずみ 北海道算数数学教育会 高等学校部会研究部
ところで、>>111に書いたけど、形式的ベキ級数展開な
で、分母を1/(1-q)系にそろえるところは、数式処理でも使えば、合っているかどうかは確認できるでしょ
だから、そこは良いとして、
その後の2項係数のところは、どこかに公式集でもありそうに思うのだが・・(^^
125:BLACKX
17/12/01 20:41:31.82 45Mtp2vR.net
LOTOの性質上厳密な条件付きなので形式的ベキ級数展開の意図がわかってないからトレス出来ずに不正してるのかもしれないですね
LOTOの性質をもっと考える必要がありそうです。
126:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 20:42:13.68 JZLrHX1j.net
>>115 余談
>で、分母を1/(1-q)系にそろえるところは、数式処理でも使えば、合っているかどうかは確認できるでしょ
ああ、これ、右辺から計算して、左辺に行くかどうかなら、手計算でもやれるな(^^
取り敢ずはそれか
だが、公式に乗せるのに、左辺から右辺への展開テクニックがありそうだよね(^^
127:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 20:58:36.95 JZLrHX1j.net
>>114 & >>115
まったく、理解がついていかないが・・・
まあ、それはおいといて
>そこで確率論のPDFをこのスレで見つけ
それ、下記PDFで良いのかな?(^^
スレリンク(math板:654番)
URLリンク(www2.math.kyushu-u.ac.jp)
確率論I, 確率論概論I 原隆 九州大学
128:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 20:59:52.47 JZLrHX1j.net
>>118 つづき
>私のしていることと非常に類似している為読もうと思ったら標本空間が書かれておりあまり理解におよびませんでした。
標本空間はね、あまり難しく考える必要はないのよ・・(^^
それ、>>87に書いてある確率空間なんだけど
原隆先生PDFのP2にあるように
「無限になると,なぜこんな変なことをするのかと思うだろうが,それは追々,具体例を通して考える.(今ま
でに確率論をちゃんと勉強してきてこの辺りが良くわかっている人は勿論良いが)何となくモヤモヤしていて
も,今のところは余り気にしないで有限の場合を念頭に,次に進んで欲しい.」
ということなのよ(^^
だから、どんどん先に読み進まないといけないよ *)
*)
数学の独習というのは、やっかいでね。
最初に難しい定義が書いてある。「これなに?」と考えても分らない。先まで進まないと、その定義の深い意味が分らない。
一方で、先を読むには、最初の定義が分らないと、先に進めない・・・、
となると、結局進めないんだな、これ(^^
だから、とにかく
分っても分らなくても、一度は先に進んで、また最初に戻る
数学の独習の場合、それをやらないと進まないんだよね(^^
129:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 21:30:01.46 JZLrHX1j.net
>>115 関連
>その後の2項係数のところは、どこかに公式集でもありそうに思うのだが・・(^^
下記に、”公式集”があるけど、斜め読みなので、使えるかどうか、よく分らない(^^
(>>105) URLリンク(ousar.lib.okayama-u.ac.jp)
整数の分割の母関数と組合せ論 安東雅訓(稚内北星学園大学) 岡山大学審査学位論文 2014
P12 より
5 公式集
q-級数の式について, よく使う式変形をまとめておく. 式変形とはいっても間に母関数をはさん
でいたり, 話の流れの都合で母関数の式そのものが命題として現れることもある. 前章が母関数の
導入だったのに対してその応用といった意味合いが強い.
130:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 21:46:19.95 JZLrHX1j.net
>>119 補足
>原隆先生PDFのP2にあるように
>「無限になると,なぜこんな変なことをするのかと思うだろうが,それは追々,具体例を通して考える.(今ま
>でに確率論をちゃんと勉強してきてこの辺りが良くわかっている人は勿論良いが)何となくモヤモヤしていて
>も,今のところは余り気にしないで有限の場合を念頭に,次に進んで欲しい.」
補足
URLリンク(ja.wikipedia.org)
確率空間
(抜粋)
定義
数学、特に確率論において、確率測度(かくりつそくど)とは、可測空間 (S, E) に対し、E 上で定義され P(S) = 1 を満たす測度 P のことである。
このとき、三つ組 (S, E, P) のことを確率空間と呼ぶ。さらに、集合 S を標本空間、S の元を標本あるいは標本点、完全加法族 E の元を事象あるいは確率事象とよぶ。また、E の元としての S を全事象という。
事象 E に対し、P の E における値 P(E) を、事象 E の起きる確率という。つまり、E は確率が定義できるものの集まりである。
必ずしも S の部分集合全てが事象とはならないことに注意されたい。
(引用終り)
131:厳密性を欠き、かつ間違っている(不正確)かも知れないが・・ あえて分かり易く書くと 1.Sを、全事象(”E の元としての S を全事象という”) 2.Eを、完全加法族で、Sの”可測”部分集合(但し、全事象Sをも含む)(”完全加法族 E の元を事象あるいは確率事象とよぶ”)*) 3.Pを、”確率”: P(E)(”事象 E に対し、P の E における値 P(E) を、事象 E の起きる確率という。つまり、E は確率が定義できるものの集まりである。”) 繰返すが、 「Sを全事象、Eを完全加法族で、Sの”可測”部分集合(但し、全事象Sをも含む)、Pを”確率”: P(E)」 これだけを頭に入れて、原隆先生PDFを読み進めてみて それで、PDFの最後まで読んで、分らないところがあれば、質問して *)完全加法族は、簡単に言えば、可測集合で、可算加法性(あるいは完全加法性)が成り立つという良い性質を持つ集合ということ(難しくは下記な(^^ ) https://ja.wikipedia.org/wiki/%E6%B8%AC%E5%BA%A6%E8%AB%96 測度論
132:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 21:52:17.96 JZLrHX1j.net
>>121 補足の補足
>「Sを全事象、Eを完全加法族で、Sの”可荘ェ”部分集合(鋳Aし、全事象Sをも含む)、Pを”確率”: P(E)」
Eを完全加法族に絞るところが、この確率空間の定義のミソなのよ(^^
つまり、完全加法族に絞って、ルベーグの測度論の上に乗せる
それが、この定義の主眼なのよ!(^^
詳しくは、PDFを読んでから、ルベーグ積分とか勉強した方がいいぞ(”ルベーグ積分理解してから確率論”と考えない方が・・)(^^
133:BLACKX
17/12/01 21:53:23.55 45Mtp2vR.net
はい。わかりました。
公式集は小分割には使えそうですが大きくなるとかまとめるという意味では無意味そうですね
ありがとうございました。個人で頑張ります。
134:132人目の素数さん
17/12/01 21:53:33.83 3eRbncNW.net
>>92
どうした?自演君
急に ぷ とか言い出してw
それじゃ小学生も騙せないのでは?wアホ過ぎw
135:132人目の素数さん
17/12/01 21:56:08.13 3eRbncNW.net
>>96
ほらね錯乱してるw
136:BLACKX
17/12/01 21:58:58.03 45Mtp2vR.net
ルベーグもちょっとかじってます。
f=g a.eね
137:132人目の素数さん
17/12/01 22:01:34.05 3eRbncNW.net
>>97
>もっとも、”おれが錯乱をさせている” のかもね~(^^
その通り
君は自分自身を錯乱させているw
自演したのは君、うっかりバラしちゃったのも君、結果錯乱したのも君w
>ぷ(^^
おいおいw バレた途端に「ぷ」連発だなw 分かり易過ぎw
138:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 22:15:34.92 JZLrHX1j.net
>>121 補足の補足
>それで、PDFの最後まで読んで、分らないところがあれば、質問して
そういや、「ぷふ」さんが居たね!!(^^
(引用)
前スレ46 スレリンク(math板:529番)
529 名前:132人目の素数さん[] 投稿日:2017/11/24(金) 11:21:29.28 ID:qDhoE0cr
ぷ
x,y∈N
P(x<y)=1/2
P(x<y0)=0
これに尽きるねー
(引用終り)
これ、感動したね(^^
ああ、なるほどと、はたと膝を打ったんだ~(^^
簡単なようだが・・、簡潔ですばらしい表現だと
明らかに、私よりレベル高そうだ
おれが分らないときは、頼みますよ、「ぷふ」さん!(^^
(参考)
なお、過去類似のことを述べた人がいたのを思い出したので、以下引用するよ(^^
前スレ46 スレリンク(math板:606番)-610
139:132人目の素数さん
17/12/01 22:20:41.47 3eRbncNW.net
>そういや、「ぷふ」さんが居たね!!(^^
まだ錯乱してるのか?w 自分にさん付けすんなよw
140:132人目の素数さん
17/12/01 22:22:22.09 3eRbncNW.net
>簡単なようだが・・、簡潔ですばらしい表現だと
これがほんとの自画自賛w(住人からはフルボッコw)
141:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 22:23:19.63 JZLrHX1j.net
>>123
>公式集は小分割には使えそうですが大きくなるとかまとめるという意味では無意味そうですね
へー、短時間でそこまで読めるか
レベル高いね~(^^
>ありがとうございました。個人で頑張ります。
まあ、そうだな
こんな表現がアスキー限定の不便な板で、まともな数学の議論なんか無理ですよ(>>5の通り)(^^
ただ、もし躓いてこまったワンポイント程度なら
なにか言えるかもしれないね(^^
頑張ってね(^^
142:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 22:30:52.69 JZLrHX1j.net
>>126
>ルベーグもちょっとかじってます。
>f=g a.eね
ああ、零集合ね
がんばってね(^^
URLリンク(ja.wikipedia.org)
143:%E3%82%B0%E7%A9%8D%E5%88%86 ルベーグ積分 (抜粋) ルベーグ積分における定理 ルベーグ積分においては零集合の上でのみ異なる値をとる関数を区別しない。 正確に言うと、関数 f と g がほとんど至るところ等しいとは μ ({x:f(x)≠ g(x)})=0 をみたすことであり、 f=g a.e. と書く。
144:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/01 23:30:44.58 JZLrHX1j.net
>>129-130
どうも。スレ主です。
三人衆の最下位の人かな?(>>77)(^^
三人衆でね、私の見るところ
一人は、(文系)High level people(>>1)
一人は、サイコパスのピエロ(不遇な「一石」)(>>1)
一人は、上記二人の腰巾着のように粘着するも、数学的な意味あるカキコはほとんど皆無の無能くん
でまあ、前スレで、「XOR’S HAMMERのYou and Bobのpuzzleを、任意関数の数当て解法」は、パズル(数学理論にはならない)だと
論破して、三人衆をぼこぼこにした・・
いまさら、成りすましなんて面倒なことをする必要は、こちらにはないがね(^^
そちらには、いま、そこしか救いがない。だから、そこに拘り粘着するんだ(^^
だが、>>82 ID:Hnsod6azさん(彼はHigh level peopleだろうが)「逃げ回るぷ君は語尾にねを付ける癖がある」と、論じているし
「もっと簡単で誰にでもわかる問題を出そう
スレ主も答えていいぞ笑
ぷ君を援護してやれ」
とも言っているよ
High level peopleさん、分っているんだ(^^
まあ、そう焦りなさんな
新スレになって、まだ24時間だ
これから「ぷふ」さんのご登場のチャンスが、まだまだきっとあるよ~(^^
145:132人目の素数さん
17/12/01 23:44:52.56 3eRbncNW.net
>>133
>いまさら、成りすましなんて面倒なことをする必要は、こちらにはないがね(^^
へえそうなんですか、でもIDが一致しちゃってますよ?w
674現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/30(木) 09:39:45.22ID:7ADafBFy
>>673
ぷ
676現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/30(木) 14:13:42.15ID:7ADafBFy>>677>>678>>679>>680
>>675
おっちゃん、どうも、スレ主です。
146:132人目の素数さん
17/12/02 01:00:51.13 83lr90vw.net
>>133
> でまあ、前スレで、「XOR’S HAMMERのYou and Bobのpuzzleを、任意関数の数当て解法」は、パズル(数学理論にはならない)だと
> 論破して、三人衆をぼこぼこにした・・
うそつき乙w
ぼこぼこにされてるのはサイコロの確率が分からないお前だろうよ
スレリンク(math板:401番)
401 名前:132人目の素数さん[sage] 投稿日:2017/11/19(日) 21:11:28.33 ID:xbpj1BvL [24/26]
>>396
> 結論を言っておくと、「あんたの間違いだよ」!!
> 会話が成立しない原因は、自分の誤りを認められないからだよ!!
>
> あんたの間違った会話を認めろだと?
> そんな会話はお断りだよ!!
>
> なお、ここはおれの立てたスレだということを忘れないでくれ
> 間違った議論を続けたければ、自分でスレ立てしなよ。あるいは、スレ28は自分が立てたんだろ? それにスレ43も空いているぞ。そっちを使え!!
怒り発狂するようでは数学はできない
まずは冷静になりましょう
お前は1回の試行ではuniform probabilityとは言えないと言ったのである
choose x with uniform probability from [ 0,1 ]
ならば[0 ,1]からuniform probabilityでxを選ぶという意味であり、
choose x with uniform probability from {1,2,3,4,5,6}
ならば{1,2,3,4,5,6}からuniform probabilityでxを選ぶという意味である
試行の回数が1回ならばuniform probabilityではないというお前の主張は誤りである
よってお前の>>250は間違っている
この間違いをお前が認めない限り他人との議論は成立しない
>>283
> >>250
> > 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> > だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>
> それ言ったらお前さんサイコロ振れないぞ。。。
147:132人目の素数さん
17/12/02 08:44:47.18 d9cBZA2m.net
>>134
ぷふ
148:132人目の素数さん
17/12/02 08:49:18.21 d9cBZA2m.net
>>133
>一人は、(文系)High level people(>>1)
うむ確かに数学的に意味ないことしか書かず
自分の考えを書けないところから
文系というのはありそう
149:132人目の素数さん
17/12/02 08:50:54.05 d9cBZA2m.net
ね
150:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/02 08:59:58.05 DyQaSaf9.net
>>136-138
「ぷふ」さん、どうも。スレ主です。
いやー、助かります(^^
成りすましだと、(>>134)
バカ証明(>>92)
する人がいるのでね(^^
151:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/02 09:00:32.20 DyQaSaf9.net
>>134
ぷ
152:132人目の素数さん
17/12/02 09:00:41.38 83lr90vw.net
語尾にねを付けるぷ君は間違っている。そう指摘した。
95 132人目の素数さん sage 2017/11/12(日) 17:57:50.63 ID:hePUuc7P
>>94
> 全く意味がないことばかり書くのね
> 別にx0が毎回変わってもいいよ
> f(x0)以外が開示されているということが重要
> x0が毎回変わろうが変わるまいがf(x0)=g(x0)になる確率は0
予想どおりの回答をありがとう。不正解ですw
なんで不正解か分かりますか?
>>74, 78
> [確認問題]
> 前スレのぷ君の『x=0戦略』を考える。
> 全事象Ω={0}、P(0)=1という自明な確率空間を取ることが出来る。
> すなわちこの問題ではxは確率変数とみなせる。
> fもgも任意であり、事前に与えられているとする。
> このときf(0)=g(0)となる確率は?
260 132人目の素数さん sage 2017/11/18(土) 14:13:33.24 ID:LAjmabkB
自分に見えない数字はみな確率変数であるというのが ぷ君 の持論である
ちなみにぷ君は前スレで
>>>505
>> 無限帽子は何を確立事象と見るかよく考えないと騙されちゃうよ
>
>>>832
>> 確率自称が分かってない
と確立もとい確率事象の見分けに自信がお有りのようだったw
にも関わらず>>95はぷ君には意味が分からないらしい
もっと簡単で誰にでもわかる問題を出そう
スレ主も答えていいぞ笑
ぷ君を援護してやれ
---
目の前に封筒があり、中には6以下の自然数xが書かれたカードが入っている
ぷ君に封筒の中身は見えない
--
さて、ぷ君に質問だ
問1
この自然数xは確率変数か?
確率変数であるというなら証明せよ。
すなわち、xがどのような標本空間と測度で選ばれるのかを一切の仮定なしに示せ
(示せるものなら笑)
問2
ぷ君は箱の中身xが1であると睨んだ
ぷ君お得意のx=1戦略である
この予想が正しい確率を一切の仮定なしに求めよ
(求められるものなら笑)
問3
ぷ君はサイコロを振ることにした
出目と封筒の中身が一致する確率を求めよ
153:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/02 09:01:17.19 DyQaSaf9.net
>>135
どうも。スレ主です。
三人衆の最下位の人かな?(>>77)(^^
三人衆でね、私の見るところ
一人は、(文系)High level people(>>1)
一人は、サイコパスのピエロ(不遇な「一石」)(>>1)
一人は、上記二人の腰巾着のように粘着するも、数学的な意味あるカキコはほとんど皆無の無能くん
154:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/02 09:02:31.74 DyQaSaf9.net
>>141
High level people(>>1)さん、がんばって~(^^
良い論戦を期待していますよ~(^^
155:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/02 09:03:15.03 DyQaSaf9.net
>>142 つづき
これあなただったね
スレ46 スレリンク(math板:411番)-412
(抜粋)
>>だから、[ 0,1 ]を全部”均等”に実施するのだ!
>と言ったのはあなたですよ?全部均等に実施するには少なくとも0の次を実施しないといけないですよね?
>その実数を聞いてるだけなんですが?
<運動のパラドックス>
ゼノンは、言った"区間[0,1]において、スタート地点0から一輪車が転がるとき、0の次に車輪が接する点が決められないから、一輪車は運動できない”と
あなたは、ゼノンです
(^^
(引用終り)
まあ、ばかばかしい話だが、あなたの論法なら、現代数学の超限帰納法(下記)不成立だわな(^^
(これ、ピエロも間違っていたけどね(^^ )
URLリンク(ja.wikipedia.org)
数学的帰納法
(抜粋)
超限帰納法
詳細は「超限帰納法(英語版)」を参照
上記の形で自然数について定式化された数学的帰納法は、任意の整列集合に対して次のように一般化することができる。この一般化を超限帰納法 (ちょうげんきのうほう、英: transfinite induction)という。任意濃度の集合は選択公理と同値な整列可能定理により整列順序を持つとすることができるので、選択公理を含む公理系であれば超限帰納法は任意濃度の集合に対して成立すると主張できる。
(引用終り)
156:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/02 09:06:19.11 DyQaSaf9.net
>>144 つづき
で、本題(>>135):
「お前は1回の試行ではuniform probabilityとは言えないと言ったのである
choose x with uniform probability from [ 0,1 ]
ならば[0 ,1]からuniform probabilityでxを選ぶという意味であり、
choose x with uniform probability from {1,2,3,4,5,6}
ならば{1,2,3,4,5,6}からuniform probabilityでxを選ぶという意味である
試行の回数が1回ならばuniform probabilityではないというお前の主張は誤りである」
ここな
1.命題Aと命題Bが、等価(同値)とは、A→Bと、その逆B→Aが言えなければならない
2.例えば、”百発百中です”で、1発打ってまぐれ当りで、”ほら、百発百中です”というなら、バカかと(^^
3.”百発百中です”というためには、百発打って百中しなければならない
4.”uniform probabilityで確率1で的中できる”に対して、「1回の試行で1回当たった。だから確率1」というやつは、バカかと(^^
5.”uniform probabilityで確率1で的中できる”→「1回の試行で1回当たった。だから確率1」は言えても、逆は言えない
6.実際、Taylor先生も文献[HT08b]で、[HT08b]中で、 「これをμ戦略が確率1で正しいと解釈することには注意が必要です。
固定されたfixed true シナリオの場合、区間[0,1](またはRにおいて、適切な確率分布の下で)において瞬間tをランダムに選択すると、
推論3.4は、μ戦略がtで確率1で正しいことを教えてくれる。
しかし、瞬間tを固定してランダムにfixed true シナリオを選択すると、そのシナリオの下でμ戦略が正しい確率は0であるか、または存在しないかもしれません
ランダムなシナリオの概念をどのように定義するかによって異なります。」と注意を入れていて
自分勝手に、”固定!”を使用すると、確率1から0まで、なんでも言えてしまうってことだよ
お分かりかな?(^^
157:132人目の素数さん
17/12/02 09:07:17.35 83lr90vw.net
>>137
> >>133
> >一人は、(文系)High level people(>>1)
> うむ確かに数学的に意味ないことしか書かず
> 自分の考えを書けないところから
> 文系というのはありそう
「相手は文系」「だから自分より劣っている」
これは心理学の防衛機制 "合理化" の典型例であるw
君は前スレから>>141の問いに目をつぶっているが、
もう逃げどころはないのであって、
自 分 が 間 違 っ て ま し た
と認めるほかないのである
158:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/02 09:07:43.13 DyQaSaf9.net
>>145 つづき
(参考)
スレ46 スレリンク(math板:501番)
(抜粋)
501 返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2017/11/23(木) 08:53:04.51 ID:A258vGqh [1/13]
>>497 補足
1.>>50より"<言いたいことは、結論を言えば、XOR’S HAMMERも、Sergiu Hart氏・時枝も、全部パズルなんだよね>
を書いた時点で、>>479-485を、切り札にする予定だった
2.(文系) High level people たちの<数学ディベート>(もどき?)(>>8)について:
>>492-494は、”uniform probability”を説明するための非数学的な例えの説明であって、そこに重箱の隅つつきの難癖をつけてもなんにもならんぜ
何も間違っていない。”uniform probability”の意味を理解していない、貴方たち(文系) High level peopleが、曲解して>>492-494のような難癖をつけているだけのことだ
3.「時枝の前に、まず、>>471-472の”XOR’S HAMMERの任意関数の数当て解法”をやろう!」(>>56より)
と言った意図は、二つある
1)[HT08b]中で
「これをμ戦略が確率1で正しいと解釈することには注意が必要です。
固定されたfixed true シナリオの場合、区間[0,1](またはRにおいて、適切な確率分布の下で)において瞬間tをランダムに選択すると、
推論3.4は、μ戦略がtで確率1で正しいことを教えてくれる。
しかし、瞬間tを固定してランダムにfixed true シナリオを選択すると、そのシナリオの下でμ戦略が正しい確率は0であるか、または存在しないかもしれません
ランダムなシナリオの概念をどのように定義するかによって異なります。」と注意を入れていて(>>485)
自分勝手に、”固定!”を使用すると、確率1から0まで、なんでも言えてしまうこと
2)”XOR’S HAMMERの任意関数の数当て解法”は、単純に1列で決定番号も使わないシンプルなパズルだから、貴方たち(文系) High level peopleがどこで躓いているかが明白になること
(引用終り)
つづく
159:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/02 09:08:26.39 DyQaSaf9.net
>>147 つづき
(参考)原文
[HT08b] Christopher S. Hardin and Alan D. Taylor. A peculiar connection between the axiom of choice and predicting the future. American Mathematical Monthly, 115(2):91{96, February 2008.
URLリンク(citeseerx.ist.psu.edu)
(抜粋)
P93
One needs to be cautious about interpreting this as meaning that the μ-strategy
is correct with probability 1. For a fixed true scenario, if one randomly selects an
instant t in the interval [0,1] (or in R, under a suitable probability distribution), then
Corollary 3.4 does tell us that the μ-strategy will be correct at t with probability 1.
However, if one fixes the instant t, and randomly selects a true scenario, then the
probability that the μ-strategy is correct at t under that scenario might be 0 or might
not even exist, depending on how one defines the notion of a random scenario.
(引用終り)
以上
160:132人目の素数さん
17/12/02 09:10:00.14 83lr90vw.net
>>145
> 4.”uniform probabilityで確率1で的中できる”に対して、「1回の試行で1回当たった。だから確率1」というやつは、バカかと(^^
ぶわーかww
そんなことを言うやつはさすがにお前独りだけ
サイコロを一回振って1の目が出たら、このサイコロは「確率1で1の目が出るサイコロ」なのか??
お前は前スレで1回の試行ではuniform probabilityとは言えないと言ったのである
choose x with uniform probability from [ 0,1 ]
ならば[0 ,1]からuniform probabilityでxを選ぶという意味であり、
choose x with uniform probability from {1,2,3,4,5,6}
ならば{1,2,3,4,5,6}からuniform probabilityでxを選ぶという意味である
試行の回数が1回ならばuniform probabilityではないというお前の主張は誤りである
よってお前の>>250は間違っている
この間違いをお前が認めない限り他人との議論は成立しない
>>283
> >>250
> > 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> > だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>
> それ言ったらお前さんサイコロ振れないぞ。。。
161:132人目の素数さん
17/12/02 09:16:47.70 83lr90vw.net
>>145
> 4.”uniform probabilityで確率1で的中できる”に対して、「1回の試行で1回当たった。だから確率1」というやつは、バカかと(^^
この発言で分かるように、スレ主は問題の認識がマチガッテル
時枝問題もHart問題もXOR’S HAMMERも、試行結果をもとに確率を割り出す推定問題ではないのだが・・
162:132人目の素数さん
17/12/02 09:20:19.37 83lr90vw.net
スレ主は構ってもらいたくて発言してるんだろ?
たまに思い出したように、唐突に時枝の話題を出してくるよなw
見え透いてるよw
163:132人目の素数さん
17/12/02 09:29:42.38 83lr90vw.net
ぷ君は前々スレで記念カキコしたが、間違って後に引けなくなってるだろ?
断言してもいいが、お前は絶対に測度論を勉強していない
確率変数は?標本空間は?と問われて、Aかな?Bかな?とモゴモゴ言ってる時点でゲームセット
悪いことは言わんからまずは下の不正解の理由を理解しようよ
95 132人目の素数さん sage 2017/11/12(日) 17:57:50.63 ID:hePUuc7P
>>94
> 全く意味がないことばかり書くのね
> 別にx0が毎回変わってもいいよ
> f(x0)以外が開示されているということが重要
> x0が毎回変わろうが変わるまいがf(x0)=g(x0)になる確率は0
予想どおりの回答をありがとう。不正解ですw
なんで不正解か分かりますか?
>>74, 78
> [確認問題]
> 前スレのぷ君の『x=0戦略』を考える。
> 全事象Ω={0}、P(0)=1という自明な確率空間を取ることが出来る。
> すなわちこの問題ではxは確率変数とみなせる。
> fもgも任意であり、事前に与えられているとする。
> このときf(0)=g(0)となる確率は?
164:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/02 09:38:19.99 DyQaSaf9.net
>>121 訂正
「Sを全事象、Eを完全加法族で、Sの”可測”部分集合(但し、全事象Sをも含む)、Pを”確率”: P(E)」
↓
「Sを全事象、確率事象Eは完全加法族で、Sの”可測”部分集合(但し、全事象Sをも含む)、Pを”確率”: P(E) (普通 P(E) =0~1で、P(S)=1)とする」
(補足:有限事象で、サイコロ1つの確率なら、全事象S={1,2,3,4,5,6}で、確率事象EはSの部分集合でかつSを含み、P(1)=P(2)=・・・=P(6)=1/6 & P(S={1,2,3,4,5,6})=1 となる。
サイコロ2つなら、全事象S’=S^2 (Sの直積)とかになる。あとは略す。
この確率空間の定義は、事象が連続濃度の場合に、測度論に持ち込むために必要となる。 )
まあ、蛇足だけどね・・
しかし、躓くところは、人それぞれだから、丁寧に書いた(^^
165:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/02 09:44:20.15 DyQaSaf9.net
>>149-150
笑える(^^
そんな理解では、Taylor先生の>>148は、解釈できないぜ(^^
”For a fixed true scenario, if one randomly selects an
instant t in the interval [0,1] (or in R, under a suitable probability distribution), then
Corollary 3.4 does tell us that the μ-strategy will be correct at t with probability 1.
However, if one fixes the instant t, and randomly selects a true scenario, then the
probability that the μ-strategy is correct at t under that scenario might be 0 or might
not even exist, depending on how one defines the notion of a random scenario.”
という文をどう理解してんだ?(^^
166:132人目の素数さん
17/12/02 09:53:08.30 83lr90vw.net
>>154
> という文をどう理解してんだ?(^^
レス済み
同様のことを昔からさんざん言ってきている
お前と"ぷ"だけが分かってないことである
スレリンク(math板:505番)
156 自分:132人目の素数さん[sage] 投稿日:2017/08/19(土) 22:46:59.17
>(1)FixされたR^Nに対して99/100が成り立つ からと言って
>(2)確率的に選ばれるR^Nに対して99/100が成り立つ は言えない
(1') サイコロの確率だけで99/100が言える問題設定=時枝記事の前半部分=上記(1)の設定
(2') 非可測性が問題になるR^N X 100 を確率標本に取った問題設定=上記(2)の設定
時枝記事を理解できるかは、この2つを区別できるかどうかにかかっていると言ってよい。
記事の前半を正しく(1')の設定で読んだとしたら確率99/100は論理で理解できる。
ただし記事の後半は個々の箱のr_i∈Rの独立性を議論している。
(1')の設定では各r_iは固定されており、そもそも確率事象ではなく独立性は関係ない。
よって記事の後半は(2')の設定を頭に浮かべながら読むのがいいだろう。
非可測性の観点から記事前半の戦略を否定する人は設定を取り違えて(2')と解釈している。
あるいは相手の考えている設定にはお構いなく(2')の設定で議論する。このため話がすれ違う。
とはいえ、記事の後半を読むと(2')に誘導させられる気持ちも分かる。
取り違えの誘発は時枝氏の意図である可能性もある。
・(1')と(2')の違いが分からない
・決定番号は∞
・サイコロで箱の数を決めれば現代確率論に反するので当てられない
・カントールは間違っている
こういう手合いは第三の勢力で、あまりマトモなものではない。
167:132人目の素数さん
17/12/02 09:56:47.84 Ph8fTUH9.net
自演君w
バレたとたんに「ぷ」連発w
バカ杉w
そんで未だに自演してるしw
アホ杉w
168:132人目の素数さん
17/12/02 09:57:42.24 Ph8fTUH9.net
>お前と"ぷ"だけが分かってないことである
つまり分かってないのは一人w
自演君w
169:132人目の素数さん
17/12/02 10:00:56.00 83lr90vw.net
スレ主は>>148も理解していないし、>>155も理解しないだろう
理解してもらうことは全然期待していないので
スレ主も俺のことをバカにし続けるだろうがそれで構わない
どちらの言い分が正しいかは書かれたことを読めば分かるからな
スレ主は
・決定番号は∞
・サイコロで箱の数を決めれば現代確率論に反するので当てられない
・サイコロを1回振っただけでは uniform probabilityとは言えない
と発言する人間であり、これがどういう人間かはマトモな人間なら誰でもわかる
>>283
> >>250
> > 要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> > だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>
> それ言ったらお前さんサイコロ振れないぞ。。。
170:132人目の素数さん
17/12/02 10:16:15.03 83lr90vw.net
ぷ君がどれだけマトモな人間かは知らないが間違いに気付いているなら素直に認めてほしい。
相手に負けたくない一心で「ぷ」でごまかすのは子どもじみている。
間違いや勘違いは誰でもするんだから恥ずかしいことではない。
95 132人目の素数さん sage 2017/11/12(日) 17:57:50.63 ID:hePUuc7P
>>94
> 全く意味がないことばかり書くのね
> 別にx0が毎回変わってもいいよ
> f(x0)以外が開示されているということが重要
> x0が毎回変わろうが変わるまいがf(x0)=g(x0)になる確率は0
予想どおりの回答をありがとう。不正解ですw
なんで不正解か分かりますか?
>>74, 78
> [確認問題]
> 前スレのぷ君の『x=0戦略』を考える。
> 全事象Ω={0}、P(0)=1という自明な確率空間を取ることが出来る。
> すなわちこの問題ではxは確率変数とみなせる。
> fもgも任意であり、事前に与えられているとする。
> このときf(0)=g(0)となる確率は?
171:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/02 10:18:01.42 DyQaSaf9.net
>>153 補足
>「Sを全事象、確率事象Eは完全加法族で、Sの”可測”部分集合(但し、全事象Sをも含む)、Pを”確率”: P(E) (普通 P(E) =0~1で、P(S)=1)とする」
確率事象Eは、一般に”Borel 集合族”だという。ここも
172:、確率論の重要キーワードだけど 詳しくは、下記岩田先生 広島大PDFをご参照ください(^^ (まあ、最初は細かいところに拘らずに、どんどん最後まで読むべしだが・・(^^ ) http://home.hiroshima-u.ac.jp/iwatakch/ Welcome to My Home Page 岩田耕一郎 大学院理学研究科数学専攻・理学部数学科 広島大学 http://home.hiroshima-u.ac.jp/iwatakch/probstaC/lecturenote/probstatC2007rev.pdf 確率統計C 岩田耕一郎 広島大学2007 (抜粋) P6 以後、S は一般的な集合を表す記号として使い特定のものを意識しない。とはいうものの S は標本空間Ω を指すかあるいはRd の部分集合を指すことが多い。但しS = Φ だとそれを 定義域とする写像はつまらないものしかないので、S ≠ Φ としておいた方がよいだろう。 2.2 定義. S ≠ Φ かつB がS 上のσ-加法族であるとき可測空間(S, B) は非自明であるという。 この講義ノートでは必要な場合でもいちいちS ≠ Φ と断らないこともある。なお確率空間 に関してはP(Ω) = 1 であるから必然的にΩ ≠ Φ である。確率空間の最も重要な例としては 区間(0, 1], その上のBorel 集合族とLebesgue 測度からなる三つ組がある(まだこの概念に不 案内でも構わない)。Borel 集合族についてはこの節で正式に導入し、また第3 節でLebesgue 測度について一つのとらえ方を紹介する。 (引用終り) つづく
173:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/02 10:19:02.50 DyQaSaf9.net
>>160 つづき
(補足)
講義ノート 注意 講義で配ったものとは細部で違いがあります。
授業進行に伴って種々の間違い、勘違い、構成上の不都合など ライブで改訂していきます。 気がついたときは講義終了時などに知らせてください。
(7月4日までの講義で気づいた点を修正してあります。 2007年7月4日版をuploadしました。まだまだ修正が加わる見込みです)
総ページ数は136でpdfのファイルサイズは608KBに上っています。 もし印刷する場合はいっぺんにやらない方がよいかもしれません。
(なお受講生が当講義のために利用される分には自由ですが、 それ以外の場合は節度を持ってご利用ください)
講義は一部割愛しながら11節. の中心極限定理までと 19節. ランダムウォークの再帰性と非再帰性をカバーする予定です。
ところで講義ノートがカバーできていない題材もたくさんあります。 主だったところではマルコフ連鎖とマルチンゲールあたりでしょうか。
講義ノートの目次を以下に挙げておきます。
1. 導入--あるモデル
2. 確率空間と確率変数
3. 確率変数と分布--Lebesgue積分論からの準備
4. 絶対連続な分布の例ならびに分布関数
5. 確率変数と多次元確率変数
6. 確率変数と結合分布
7. Dynkin族定理と測度の一意性
8. 測度の直積と確率変数の独立性
9. 可逆アファイン写像とLebesgue測度
10. 特性関数と正規分布
11. ランダムウォークと中心極限定理
12. 分布関数と弱収束
13. 大数の弱法則と強法則
14. モーメント母関数とキュムラント母関数
15. 大偏差原理
16. 無限次元確率変数とその分布
17. 無限直積測度の構成
18. 独立性の$\sigma$加法族による定式化
19. ランダムウォークの再帰性と非再帰性
20. 可微分同相写像とLebesgue測度
21. Sardの定理と面積公式
以上
174:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/02 10:20:12.88 DyQaSaf9.net
>>156-157
三人衆の最下位の人かな?(>>77)(^^
必死だな(^^
175:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/02 10:21:49.45 DyQaSaf9.net
>>158-159
笑える(^^
>ぷ君がどれだけマトモな人間かは知らないが間違いに気付いているなら素直に認めてほしい。
まあ、がんばってくれ(^^
176:132人目の素数さん
17/12/02 10:26:44.11 83lr90vw.net
>>163
> >>158-159
> 笑える(^^
>
> >ぷ君がどれだけマトモな人間かは知らないが間違いに気付いているなら素直に認めてほしい。
>
> まあ、がんばってくれ(^^
スレ主がどういう人間かは知っているから何も期待していないw
どちらの言い分が正しいかは書かれたことを読めば分かるからな
スレ主は
・決定番号は∞
・サイコロで箱の数を決めれば現代確率論に反するので当てられない
・サイコロを1回振っただけでは uniform probabilityとは言えない
と発言する人間であり、これがどういう人間かはマトモな人間なら誰でもわかる
掲示板にトンデモ数学を垂れ流し続ける人生だったな
177:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/02 10:36:49.92 DyQaSaf9.net
>>164
笑える(^^
まあ、がんばってくれ(^^
178:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/02 10:39:25.81 DyQaSaf9.net
>>164
スレ46 スレリンク(math板)
(抜粋)
626 自分返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2017/11/28(火) 07:33:08.35 ID:Q8sc6Fdx [2/10]
過去何人か、時枝記事の解法を否定した、数学の専門家らしき人たちがいた
一人は、私スレ主が、確率論の専門家さんと呼ぶ人(>>26)
あと、時枝を与太話と言った人(この人はこの一言だけだったが)
その後に、非可測集合を使うことを問題視した人(あなたの無茶苦茶な”固定”に辟易して去って行ったね)
そして、スレ38のID:BjC0xyI+さん(>>606-611)
そして今、「ぷふ」さん(>>529)
(引用終り)
179:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/02 10:47:44.61 DyQaSaf9.net
>>166 補足
>一人は、私スレ主が、確率論の専門家さんと呼ぶ人(>>26)
ここ>>30-39に引用してあるよ
つづく
180:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/02 10:48:14.39 DyQaSaf9.net
>>167 つづき
>そして、スレ38のID:BjC0xyI+さん(>>606-611)
スレ46 スレリンク(math板:606番)-611
(抜粋)
250 名前:132人目の素数さん[] 投稿日:2017/08/13(日) 17:21:30.56 ID:BjC0xyI+ [20/39]
>>249
100が最大という情報を与えられていると問題をすり替えましたね?
それでもdAもdBも知らない状況なら1/2
dAを知っていればこの場合は(100-dA)/99ですよ
253 名前:132人目の素数さん[] 投稿日:2017/08/13(日) 17:53:11.77 ID:BjC0xyI+ [21/39]
>>251
ではどの値もあらかじめ分かっていないということですね?
それなら
dAを知らなければ1/2で知っていれば0です
254 名前:132人目の素数さん[] 投稿日:2017/08/13(日) 17:55:17.47 ID:BjC0xyI+ [22/39]
>>252
>しかし上限が無いからといって確率0にはなりません
情報が得られていない蹴れば1/100で箱を開けたあとでは0です
どうも理解していないかしようとしていないようですね
まあ
自分としてはこの「パラドックス」の元凶が分かったのでホッとしました
255 名前:132人目の素数さん[] 投稿日:2017/08/13(日) 17:58:32.88 ID:BjC0xyI+ [23/39]
>>253
情報として与えられているのは
d1~d100は自然数であるということのみですので
dAが何であれ
その値を知らなければ確率は1/2で知った時点で確率は0となります
257 名前:132人目の素数さん[] 投稿日:2017/08/13(日) 18:03:03.18 ID:BjC0xyI+ [24/39]
>>252
>(無関係でないと主張するなら根拠を示してもらえばいいです)
無視していただいて結構ですけど
これを書いたのは
この場合無数にある自然数のどれであるか分からないからこそ0であり
もしも上限が分かっていれば正になるので
私が0であるという主張をしているのは自然数が無数にあることが前提であるといいたかったからです
(引用終り)
つづく
181:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/02 10:48:51.36 DyQaSaf9.net
>>168 つづき
>そして今、「ぷふ」さん(>>529)
ここは、>>128に引用してあるよ(^^
以上
182:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/02 11:06:48.25 DyQaSaf9.net
>>164
1)
>・決定番号は∞
似たようなことは、表現は違えど、いろいろな人が言っているよ(^^
例えば
”dAを知らなければ1/2で知っていれば0です”(>>168) ”情報が得られていなければ1/100で箱を開けたあとでは0です どうも理解していないかしようとしていないようですね まあ 自分としてはこの「パラドックス」の元凶が分かったのでホッとしました”(>>168) また、「ぷふ」さん ”x,y∈N P(x<y)=1/2 P(x<y0)=0 これに尽きるねー”(>>128) 2) >・サイコロで箱の数を決めれば現代確率論に反するので当てられない 確率の専門家さん(>>39) "時枝氏の方法は「確率は計算できない」が今の確率論の答えだと思う. 確率0というのは,可測となるような選び方をしたら,それがどのような選び方でも確率は0になるだろうってこと 残す番号を決める写像Nが可測で,また開けた箱から実数を決める写像Yが可測ならば P(X_N=x)=0が導かれるだろう" 3) >・サイコロを1回振っただけでは uniform probabilityとは言えない 上記>>145 >>147-148 >>154に書いた通りだよ 加えて、スレ46 https://rio2016.5ch.net/test/read.cgi/math/1510442940/483-484 「Taylor氏らは、[HT08b] の結論を否定している。([HT09] および(成書)The Mathematics of Coordinated Inference: A Study of Generalized Hat Problems )」 つまりは、”Corollary 3.4 does tell us that the μ-strategy will be correct at t with probability 1.”(>>148)は、「数学的に無価値」でしたということですよ(^^ 以上