17/12/10 10:58:19.86 IMWeAd+d.net
>>485 つづき
2.
”Let g be continuous and discontinuous on sets of points that are each dense in the reals.”
とは、continuous, discontinuous, 両者とも、Hausdorff dimension =1/2 見たいな形で、お互いが混じり合っているイメージなんだけど、おかしいかな?
で、無理数と有理数だと、前者がHausdorff dimension =1、後者がHausdorff dimension =0 なんだけど・・・
「函数の連続点の全体からなる集合は開集合の可算個の交わり(Gδ-集合)である。また不連続点の全体は閉集合の可算個の合併(Fσ-集合)である。」(by 上記wikipedia 不連続性の分類 )
だから、それで良いのか・・な(^^
以上