現代数学の系譜 工学物理雑談 古典ガロア理論も読む47at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む47 - 暇つぶし2ch525:現代数学の系譜 雑談 古典ガロア理論も読む
17/12/10 10:50:30.04 IMWeAd+d.net
>>474 補足
新定理(>>445)が成り立つとする。その定理が、いまの問題(Ruler Function>>284)に適用可能とする。ならば、背理法でなく、直接証明が可能だろう?
ちょっと>>445に倣って書いて見ると
1.Ruler Function f_w(p/q) = 1/w(q) where p and q are relatively prime integers.(>>285より)
  w(q) an increasing function that eventually majorizes every power function. (いかなるq^rよりも急増加関数)
  無理数で0。ついでに、f_w(0) = 1 (>>285より。*)
(「無理数で、リプシッツ連続」は>>284以下の既出文献でさんざん証明**)済みで略す)
2.f_w(p/q) = 1/w(q)>0と出来るとして、p/q(有理数)では、不連続になる。(自明だが念のために書いた)
3.このRuler Function に、新定理が適用可能とする。
4.R-B_f ⊂ Q = ∪[p∈Q] { p } …(1) (1)の右辺は疎な閉集合の可算和だから、上の新定理が使えて、f はある開区間(a,b)の上でリプシッツ連続になる。
? この後、そのままで良いのか?
 特に、(a,b)の上で連続になる。QはR上で稠密だから、x∈(a,b)∩Qが取れる。
 fは点xで不連続であるが、しかし(a,b)の上で連続に、矛盾する。
QED
a)なので、”このRuler Function に、新定理が適用可能”がおかしいか
b)新定理がおかしいか
二択じゃないかな?
なお、個人的には、”each dense”の制約は、このRuler Function問題では本質じゃないかなと思う
なのでa)で、新定理成立だが、Ruler Function問題には適用不可ってことになる可能性
これが一番数学的には面白いと思うよ
つづく


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch