現代数学の系譜 工学物理雑談 古典ガロア理論も読む47at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む47 - 暇つぶし2ch509:132人目の素数さん
17/12/09 21:55:57.54 hlJ+uBXM.net
以下、実数全体の集合を R とし、R に通常の位相を入れて位相空間とする。
このとき、任意の p∈R に対して、1点集合 { p } は疎な閉集合である。
次に、有理数全体の集合を Q とする。このとき、
Q = ∪[p∈Q] { p }
が成り立つ。各 { p } は疎な閉集合であることに注意する。
また、p∈Q を動かすとき、集合 { p } は全て異なる集合になるが、
その集合たちは全部で可算無限個しか無いので、>>461 に書いた定義により、
Q は可算無限個の疎な閉集合の和で被覆できる、ということになる。
Q 自体は稠密だし閉集合でもないので、Q 自体は疎な閉集合では無いが、しかし
「 Q は可算無限個の疎な閉集合の和で被覆できる」・・・ (*)
のである。そして、上記の(*)そのものは
スレ46 スレリンク(math板:422番)
の「定理」とは無関係であり、単なる位相空間論の簡単な演習問題である。
ちなみに、「定理」の証明は、スレ46の>>422を書いた時点で
既に証明を書ききってある(投稿してないだけで)。
しかし、今はここには書かない。
まずスレ主が(*)について理解するのが先決である。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch