17/12/06 23:29:51.17 zFmWrB5N.net
ルール上できないことを想定して思考を組み上げてしまうところが
確率論の弱点
494:132人目の素数さん
17/12/06 23:31:38.02 NQmNhB8q.net
数学的に突っ込まれてもスルーするしか逃げ道がないのが屁理屈の弱点ですね(笑)
495:132人目の素数さん
17/12/06 23:32:15.16 bFLTO55n.net
ルール上出来ないことを勝手に想定してるのは誰なんですかね
496:132人目の素数さん
17/12/06 23:34:11.37 zFmWrB5N.net
モンティホール問題には
挑戦者もモンティも同時に2つのドアは開けられないという
強力な制約がある
確率でものを考える時この重要な点を見逃してしまう
497:132人目の素数さん
17/12/06 23:34:51.83 bFLTO55n.net
はいはい確率の勉強しましょうね
498:132人目の素数さん
17/12/06 23:36:00.38 zFmWrB5N.net
>>479
数学的な質問ってどれですか?
499:132人目の素数さん
17/12/06 23:36:50.16 VTvKz8hM.net
>>483
なんでプレイヤーが選べる2つのドアの確率足しても1にならないんですか?
500:132人目の素数さん
17/12/06 23:41:21.72 tdXW3h6p.net
最高裁長官は超絶エリートらしいですが、数学とか物理の問題を解けるのでしょうか?
501:132人目の素数さん
17/12/06 23:49:01.92 zFmWrB5N.net
>>484
1になるなんてどこに書いてあるの?
502:132人目の素数さん
17/12/06 23:50:45.49 zFmWrB5N.net
『挑戦者は2つのドアを同時に開けることはできないので
1つのドア選択後の残りの2つのドアが当たる確率が
3分の2になることはない』
503:132人目の素数さん
17/12/06 23:52:36.03 bFLTO55n.net
>>486
どの教科書にも書いてあります
確率の和は1です
504:132人目の素数さん
17/12/06 23:53:05.14 bFLTO55n.net
>>487
ではいくつになるのですか?
505:132人目の素数さん
17/12/06 23:57:17.71 zFmWrB5N.net
>>488
教科書じゃなくてレス中にだよ
自分の脳内を披露されても困る
506:132人目の素数さん
17/12/06 23:58:16.48 bFLTO55n.net
>>490
あなた以外の人間の共通の認識として、確率の和は1です
507:132人目の素数さん
17/12/06 23:58:48.48 VTvKz8hM.net
1+1とかよくわかんないけど、なんとなくゴジラになりそうだからゴジラでいいや、って話になってますよー
最低限の知識は勉強しましょうね
508:ー
509:132人目の素数さん
17/12/06 23:58:54.76 zFmWrB5N.net
>>489
強力に強力に3分の1で固定されます
510:132人目の素数さん
17/12/07 00:00:11.18 yfet9akz.net
>>493
確率の和は1です
お願いなので、まず高校数学から勉強してください
511:132人目の素数さん
17/12/07 00:01:20.97 ZOu5ooHi.net
>>491
共通の認識とか関係ないだろ
確率の和は1と書いたレス番を指定してほしいと言っただけ
512:132人目の素数さん
17/12/07 00:02:13.14 ZOu5ooHi.net
>>494
だからレス番を指定してくれ
513:132人目の素数さん
17/12/07 00:03:17.14 h0yJoWCn.net
>>496
確率空間(かくりつくうかん、英: probability space)とは、可測空間 (S, M) に確率測度 μ(S) = 1 を入れた測度空間 (S, M, μ) を言う。
URLリンク(ja.m.wikipedia.org)
ウィキペディアからの引用です
514:132人目の素数さん
17/12/07 00:03:22.37 fpnAi7Zj.net
あああああああ
515:132人目の素数さん
17/12/07 00:03:35.80 yfet9akz.net
>>495
今のやり取りの中にあろうがなかろうが、確率の和は1です
516:132人目の素数さん
17/12/07 00:05:14.37 yfet9akz.net
そんなの引用してきても分かるわけないだろw
517:132人目の素数さん
17/12/07 00:05:32.38 h0yJoWCn.net
>>497
これを中学生でもわかるように訳せば、確率の和は1ということです
518:132人目の素数さん
17/12/07 00:05:59.77 ZOu5ooHi.net
>>499
どういう思考プロセスで確率の和が1にならないと思ったんだ?
519:132人目の素数さん
17/12/07 00:07:04.32 yfet9akz.net
>>502
?
それは私が聞きたいのですが
1/3+1/3は1にならないですよね?
520:132人目の素数さん
17/12/07 00:10:47.83 ZOu5ooHi.net
『挑戦者は2つのドアを同時に開けることはできないので
1つのドア選択後の残りの2つのドアが当たる確率が
3分の2になることはない』
まだか?
521:132人目の素数さん
17/12/07 00:11:55.14 yfet9akz.net
>>504
都合の悪いレスを無視しないでくださいね
>>503にお願いします
522:132人目の素数さん
17/12/07 00:12:10.19 h0yJoWCn.net
>>504
なんで1/3+1/3=2/3は1にならないんですか?
523:132人目の素数さん
17/12/07 00:12:20.76 ZOu5ooHi.net
>>497
だから逃げないでレス番を指定してくれ
524:132人目の素数さん
17/12/07 00:12:33.78 iDRNCJVq.net
>>477
サイコロの目も一度に出るのは1つ
偶数の出る確率は?
525:132人目の素数さん
17/12/07 00:12:39.94 yfet9akz.net
>>507
>>499
526:132人目の素数さん
17/12/07 00:12:47.82 h0yJoWCn.net
>>507
>>499
527:132人目の素数さん
17/12/07 00:14:17.70 ZOu5ooHi.net
>>503
だから3分の1は3つあると言っただろ>>471
528:132人目の素数さん
17/12/07 00:15:23.82 yfet9akz.net
>>511
>>472-473
529:132人目の素数さん
17/12/07 00:15:54.64 h0yJoWCn.net
>>511
2つですよね?
プレイヤーが選択できるのは2つだけですよ?
じゃあ、モンティーがハズレを選択した後、そのドアは爆破されるということにしましょうか
さぁ、ドアは2つしかなくなりましたね
530:132人目の素数さん
17/12/07 01:17:16.05 bDhs7sJd.net
確率論の問題になるんだろうけど、いわゆる「ガチャ」で、景品がn種類あるとき、コンプまでに引く回数の期待値ってどうやって求めたらいいんだろ?
i番目の景品の出る確率がp_iであって、当然Σp_i=1で、各回の確率は完全に独立かつ無相関。引く回数の上限はないが、コンプした時点(つまり各景品を1個以上引いた状態になったら)やめるものとする。
531:132人目の素数さん
17/12/07 02:16:47.69 TVevgqox.net
イエス・キリストと東京大学大学院数理科学研究科教授はどっちの方が凄いですか?
532:132人目の素数さん
17/12/07 02:21:15.22 aBvs9Q5N.net
この数列{An}の項数は有限ですか?
①初項A0は2以上の整数とする
②A0の素因数分解を行う
③それぞれの素因数が何番目の素数かを出す
④素因数の大きな順に素数番を並べてこれをA1とする
⑤A2以降も同様の操作で値を決定するが、項の値が1になったら素因数分解ができないためその項を末項とする
……
例えば
A0 = 4798079 のとき
A0 = 11*(13^2)
533:*29*89 89は24番目, 29は10番目, 13は6番目, 11は5番目だから A1 = 241065 同様の操作で A2 = 93532 続けていくと A14 = 81 = 3^4 A15 = 2 A16 = 1
534:132人目の素数さん
17/12/07 02:51:18.02 DqP/++9+.net
やっぱり数学って天才秀才にしかできない学問なのかな・・・?
白チャートすら理解できない・・・・・。
535:132人目の素数さん
17/12/07 04:23:39.53 fNK7k2cr.net
>>516
直観的な説明(証明じゃない)を書いた
どうだろう?
まずn番目の素数をp_nとしたとき、p_n>nを示す…①
次にA_iとA_(i+1)の大小関係を考える。
A_i=(p_1)(p_2)…(p_k)
と表せるが、このとき①より
「p_mの桁数」≧「mの桁数」
つまり
「A_iの桁数」≧「A_(i+1)の桁数」
で、この等号が成立しない場合は明らかにA_i>A_(i+1)…②
この等号が成立する場合は、①と合わせて考えればやはりA_i>A_(i+1)…③
②、③で、A_iは自然数だから、iが1増加する度に数列{A_i}は必ず1以上減少する。
ゆえにA_t=1となる自然数tが必ず存在するから、有限数列
536:132人目の素数さん
17/12/07 05:26:27.95 DqP/++9+.net
デイトレーダーになりたい。
537:132人目の素数さん
17/12/07 06:51:32.29 h0yJoWCn.net
>>514
コンプガチャ 確率で出てきますよ
538:132人目の素数さん
17/12/07 07:53:14.24 /uH2iFwe.net
>>368
なんで?
昇りと下りと同じ頻度だよ。出かけるときに下ったら、帰ってきて昇るんだよ。
直観的に、放置の方が待ち時間の平均も短くなるような気がするかだけれど?
539:132人目の素数さん
17/12/07 08:54:51.93 97oqVY9H.net
「真理」に辿り着くことは可能なのでしょうか?
540:132人目の素数さん
17/12/07 11:49:08.90 iDRNCJVq.net
>>514
m回までにiが出ない確率は(1-pi)^m
i1,,ijが出ない確率は(1-pi1---pij)^m
全部が出る確率は
Σ(-1)^j(1-pi1---pij)^m
m回目に全部が出る確率は
Σ(-1)^j(1-pi1---pij)^m-Σ(-1)^j(1-pi1---pij)^(m-1)
期待値は
Σ(-1)^jm{(1-pi1---pij)^m-(1-pi1---pij)^(m-1)}
541:132人目の素数さん
17/12/07 12:13:02.69 aBvs9Q5N.net
>>518
色々計算してみた結果A_i < A_(i+1) となる例がありました
しかし大体A_(i+1)の方が小さくなるので有限項で終わってくれます
例1:桁は変わらないが値は大きくなる場合
A_0 = 526242
A_0 = 2*3*229*383
383は76番目, 229は50番目
A_1 = 765021
例2:桁も大きくなる場合
A_0 = 651
A_0 = 3*7*31
31は11番目
A_1 = 1142
542:132人目の素数さん
17/12/07 13:24:14.25 PGE1ivVB.net
∂^2 f / ∂x ∂y = ∂^2 f / ∂y ∂x
は解析的に証明されます。
初等関数を使って定義された f に対して、代数的にこれを証明できないでしょうか?
微分の操作は代数的なので、証明も代数的にできるのではないかと思いました。
543:132人目の素数さん
17/12/07 13:30:36.10 yVb0YEo/.net
微分環の話なら、そもそも導分が可換というのが(偏)微分環の定義に含まれてる
544:132人目の素数さん
17/12/07 13:54:19.36 dewlaavp.net
>解析的に証明されます。
アホの匂いが
545:132人目の素数さん
17/12/07 19:11:38.85 ovzK8Zz5.net
>>516
a,b,c,dを±1では無い整数として、a*b*c*d と表現される式に対し、
(aの桁数)+(bの桁数)+(cの桁数)+(dの桁数)-(a*b*c*d(の値)の桁数)
で計算されるものを、「桁落ち数」と呼ぶことにします。
1回の乗算に対し、桁落ち数は0か1で、上の式は三回の乗算があるので、0から3の値を取ります。
一回だけの乗算で表されている式や、もっと多くの乗算で表されている式に対しても、同様に呼ぶことにします。
n番目の素数をpとします。
pの桁数とnの桁数の差を、「素数→素数番号変�
546:キ時桁損失数」略して「損失数」と呼ぶことにします 損失数0の素数は、 2,3,5,7,29,31,37,41,43,...,97,541,547,...,997,7919,7927,...,9967,9973 です。Prime(1229)=9973,Prime(1230)=10007,Prime(10000)=104729なので、9973が損失数0の最大素数です。 損失数2の最小素数は 10^30 辺りにあると思われ、これ未満で、104729以上の素数は全て損失数1の素数です。 a,b,c,d等が素数で、a*b*c*d等と表されるものに対し、(aの損失数)+(bの損失数)+(cの損失数)+(dの損失数) を 「総損失数」と呼ぶことにします。
547:132人目の素数さん
17/12/07 19:12:16.22 ovzK8Zz5.net
さて、数列{An}のある項 A_{k} と次の項 A_{k+1}の桁数について考えます。
(簡単のため、A_{k}は平方要素を持たないものとします。)
A_{k}の桁数は、A_{k}を構成する素数の素数番号の桁数の総和に、総損失数を加え、桁落ち数を減じたものになります。
A_{k+1}の桁数は、A_{k}を構成する素数の素数番号の桁数の総和です。つまり、
A_{k}の素因数分解表現の桁落ち数>A_{k}を構成する素数の総損失数の時、A_{k+1}の桁数>A_{k}の桁数・・・・(甲)
A_{k}の素因数分解表現の桁落ち数=A_{k}を構成する素数の総損失数の時、A_{k+1}の桁数=A_{k}の桁数・・・・(乙)
A_{k}の素因数分解表現の桁落ち数<A_{k}を構成する素数の総損失数の時、A_{k+1}の桁数<A_{k}の桁数・・・・(丙)
が成立します。
A_{k}が899だった場合、899=29×31なので、二桁×二桁=三桁となっているので桁落ち数1、
一方29、31は、10番目、11番目の素数なので、ともに損失数0。従って、(甲)タイプで、これは希少。例外的な存在です。
A_{k}が29×(損失数1の素数、ただし、先頭の数が1か2、および3から始まるものの一部) という
形だった場合、桁落ち数1で、総損失数は、0+1=1で、(乙)タイプです。
損失数1の素数とは、30桁くらいまでの素数のほとんどが当てはまり、きわめて多くの例が(乙)タイプに属しております。
(乙)タイプの項移行が連続するものの中には、ループを構成しているものがあるかもしれません。
ループを構成している場合は、項数は有限ではありません。このようなものの存在を否定するためには、~10^30の何乗かの
候補のチェックを行う必要があり、コンピュータでも困難だと思われます。
548:132人目の素数さん
17/12/07 20:07:15.49 PGE1ivVB.net
松坂和夫著『解析入門3』を読んでいます。
「f がすべての r = 1, 2, 3, … に対して r 次の偏導関数を有するならば, f は C^∞ 級であるという。」
と書かれていますが、これはおかしいですよね。
549:132人目の素数さん
17/12/07 20:07:53.86 PGE1ivVB.net
連続性が仮定されていません。
550:132人目の素数さん
17/12/07 20:15:02.20 PGE1ivVB.net
f がすべての r = 1, 2, 3, … に対して r 次の偏導関数を有するならば
f はすべての r = 1, 2, 3, … に対して連続である。
というのが正しいと思っていたんでしょうね。
こんな基本的なところで間違うというのは恥ずかしすぎますね。
551:132人目の素数さん
17/12/07 20:16:19.49 PGE1ivVB.net
訂正します:
f がすべての r = 1, 2, 3, … に対して r 次の偏導関数を有するならば
すべての r = 1, 2, 3, … に対して f の r 次の偏導関数は連続である。
というのが正しいと思っていたんでしょうね。
こんな基本的なところで間違うというのは恥ずかしすぎますね。
552:132人目の素数さん
17/12/07 20:29:33.91 ZOu5ooHi.net
>>513
ちゃんとモンティが選択する前の2と3のドアの当たる確率が3分の2に
なっているだろ
URLリンク(fxconsulting.jp)
1 |2 3
553:132人目の素数さん
17/12/07 21:01:04.00 yfet9akz.net
>>534
まだやるの?
確率の和は1です
554:132人目の素数さん
17/12/07 21:27:42.61 iDRNCJVq.net
p1=====pn=1/nなら
Σ(-1)^jm(nCj){(1-j/n)^m-(1-j/n)^(m-1)}
=Σ(-1)^jm(nCj)(-j/n)(1-j/n)^(m-1)
=Σ(-1)^(j+1)(nCj)(j/n){Σm(1-j/n)^(m-1)}
=Σ(-1)^(j+1)(nCj)(j/n){Σ(1-j/n)^m}'
=Σ(-1)^(j+1)(nCj)(j/n){1/(1-(1-j/n))}'
=Σ(-1)^(j+1)(nCj)(j/n)1/(1-(1-j/n))^2
=Σ(-1)^(j+1)(nCj)(j/n)(n/j)^2
=Σ(-1)^(j+1)(nCj)(n/j)
=nΣ(-1)^(j+1)(nCj)/j
=nΣ(-1)^(j+1)Σ((n-k)C(j-1))/j
=nΣ(-1)^(j+1)Σ((n-k+1)Cj)/(n-k+1)
=nΣ(Σ(-1)^(j+1)((n-k+1)Cj))/(n-k+1)
=nΣ(1-(1-1)^(n-k+1))/(n-k+1)
=nΣ1/(n-k+1)
=n(1+1/2+1/3+++++1/n)
555:132人目の素数さん
17/12/07 21:31:35.08 iDRNCJVq.net
>>525
がんばって
ファイト!
556:132人目の素数さん
17/12/07 22:02:34.91 ZOu5ooHi.net
モンティホール問題の本質はドアの背後に何があるかは
関係ないという事です
当たりの確率はドアの数が何億個だろうが
分母は常に選択できるドアの数
分子は常に1です <
557:132人目の素数さん
17/12/07 22:02:42.42 PGE1ivVB.net
時枝正さんの You Tube の講義動画を見ました。
メビウスの帯をセンターラインで切ると4回ねじれた帯ができますが、
これはどう考えれば分かりやすいんですか?
558:132人目の素数さん
17/12/07 22:04:11.74 dewlaavp.net
>>527
当たり、松坂君でした
559:132人目の素数さん
17/12/07 22:06:41.31 yfet9akz.net
>>538
>>503、>>506、>>513
560:132人目の素数さん
17/12/07 22:20:18.65 ITgT0YxX.net
>>539
紙帯でメビウスの帯をつくり、ハサミで切れば言っている以上のことがわかります。
561:132人目の素数さん
17/12/07 22:26:54.46 IqVkdTOs.net
>>533
反例は?
562:132人目の素数さん
17/12/07 22:43:42.37 ZOu5ooHi.net
■モンティホール問題
これは間違い
URLリンク(fxconsulting.jp)
2と3のドアの当たる確率が3分の2になるのはドアを二つ同時に
開けられる時のみ
しかしそれはルール違反でできない
2と3のドアの当たる確率はそれぞれ3分の1づつ存在し続けていて
変化は起きない
『挑戦者は2つのドアを同時に開けることはできない』
確率でものを考える人はこんな単純な事実に気が付かないから
3分の2なんて変な数字が出てくる
モンティホール問題を解説したどのサイト見ても
1つのドア選択後の残りの2つのドアが当たる確率を3分の2だと
信じて疑わない
しかし、この『確率3分の2』という部分が事実を表していない
まやかしだったのです!
たしかに、脳内でシミュレーションすると、
残りの2つのドアが当たる確率は3分の2あるように見えます
しかし、現実問題として挑戦者が持つドアを開ける権限は
強力なまでに3分の1で固定されています
ゆえに、確率3分の1どうしの合算である『確率3分の2』という
数値は存在しないのです
563:132人目の素数さん
17/12/07 22:44:34.63 yfet9akz.net
>>544
>>541
564:132人目の素数さん
17/12/07 22:47:20.53 yfet9akz.net
色んな人に言えるのだが、教科書レベルの理論が理解できないときに、自分が未熟だからと考えるのではなく理論が間違っているからだと考えるのは何故なんだろうか
565:132人目の素数さん
17/12/07 22:52:44.96 eWW+JCue.net
>>515
イエス・キリスト
イエス・キリスト > 矢内原忠雄(元・東大総長)> 以後の東大総長 > 以後の東大教授
の師弟関係(線形順序)があるから。
566:132人目の素数さん
17/12/07 22:53:04.20 qLXBoPCk.net
司法試験に合格するのと、東大数学科から東大院数理科学研究科で博士号を取得するのはどっちの方がムズイ?
567:132人目の素数さん
17/12/07 22:54:42.07 qLXBoPCk.net
>>547
イエス・キリストとローマ皇帝はどっちの方が偉いですか?
568:132人目の素数さん
17/12/07 22:54:56.87 ZOu5ooHi.net
自分の言葉で>>544と同じくらいの量の文章で論理的な反証が
できる方の登場を心からお待ちしております<(_ _)>
569:132人目の素数さん
17/12/07 23:09:57.79 LQ1WfmX8.net
>>550
×論理的な反証
◯あなたへの賛同
ですよね?
570:132人目の素数さん
17/12/07 23:17:30.89 eWW+JCue.net
>>525 >>537
たとえば
∂∂f/∂x∂y、∂∂f/∂y∂x が存在し、その点で連続(定理27)
∂f/∂y、∂∂f/∂x∂y が存在し、その点で連続(Schwarzの定理)
∂f/∂x、∂f/∂y が存在し、その点で微分可能(Youngの定理)
のような仮定をするんだろうなぁ。
高木:「解析概論」改訂第三版、岩波書店(1956)p.57~59
§23.微分の順序
571:132人目の素数さん
17/12/07 23:23:07.79 aBvs9Q5N.net
>>529
なるほど
ループはあってもおかしくなさそうですね
丙と甲を含むループが存在しないことが証明できれば少しは楽になりますがなかなか難しそうです
572:132人目の素数さん
17/12/08 00:12:34.91 VQt4XLp7.net
長寿ランキング of 他分野
98歳 沢田敏男(1919/05/04~2017/10/18)農
573:業土木・ダム工学(元・京大総長)
574:132人目の素数さん
17/12/08 00:18:12.01 0x2c+pUX.net
交換不可能なのって、
f = xy(x^2-y^2)/(x^2+y^2)
だっけ?
575:132人目の素数さん
17/12/08 01:22:11.37 yTcNeCDV.net
グレゴリー・ペレルマンさんとBNFはどっちの方が頭が良いですか?
576:132人目の素数さん
17/12/08 01:42:42.48 yTcNeCDV.net
東大の数学科に入りたいのに、白チャート理解できん。どうすれば良い?
577:132人目の素数さん
17/12/08 01:45:34.45 0x2c+pUX.net
生まれ直す
578:132人目の素数さん
17/12/08 02:04:08.56 VQt4XLp7.net
>>555 (・∀・)ウン!!
f(0,0)= 0 とすれば
(∂f/∂x)(0,y)= -y は y=0 で連続
∴(∂∂f/∂x∂y)(0,y)= -1,
(∂f/∂y)(x,0)= x, は x=0 で連続
∴(∂∂f/∂y∂x)(x,0)= 1,
ですね。
{極座標で表わせば f =(1/4)rr sin(4θ)だ…}
579:132人目の素数さん
17/12/08 02:49:51.24 3SvTXVsy.net
>>558
やっぱりそれしか方法無いんですかね・・・・・?
580:132人目の素数さん
17/12/08 02:56:04.53 ma9KLTqq.net
非可算集合Aから可算集合Bへの任意の写像fに対して
|f(A')|=1となるAの部分集合A'が存在することはどう示せばいいんですか?
581:132人目の素数さん
17/12/08 03:24:35.50 3SvTXVsy.net
全と無はどっちの方が領域が大きいですか?
582:132人目の素数さん
17/12/08 06:41:01.95 DYen32XS.net
>>561
∃b f^-1(b)≠φ
583:132人目の素数さん
17/12/08 06:42:01.25 DYen32XS.net
>>533
反例知りたい
584:132人目の素数さん
17/12/08 07:08:16.77 RXp/gGvH.net
>>550
確率の勉強してからまたおいで
585:132人目の素数さん
17/12/08 08:49:32.09 hzXZT40x.net
オイラーさんって人類史上最高の天才数学者ですか?
それともガウスさんが人類史上最高の天才数学者なのでしょうか?
586:132人目の素数さん
17/12/08 11:22:49.35 GsyO8AUC.net
馬鹿の救いにはならんよ
587:132人目の素数さん
17/12/08 11:44:38.79 pfqfDj0R.net
質問なのですが
スマホの自撮り棒みたいに、自分の位置(原点)から一定の距離を保った目標物があったとして、
角度とその一定の距離だけで2次元上の座標XとYて求める事ってできますか?
588:132人目の素数さん
17/12/08 11:59:26.11 XurrXH1x.net
地鶏版の平面がきまる(平面までの距離と法線)から、あとはその平面内の2次元ベクターを任意で(たとえべ重力)で決めれば決まるんじゃないの。
589:132人目の素数さん
17/12/08 12:00:58.35 ywmfsN7J.net
つ【極座標】
590:132人目の素数さん
17/12/08 12:09:33.06 RoGTqUvC.net
数学Ⅱの関数f(x)=-2x^3+24xの極値を求めなさいっていう問題で
=-6x^2+24から
f'(x)=0とすると、x=
の求め方が授業出てなくてわからないので教えてもらえませんか?
591:132人目の素数さん
17/12/08 12:11:46.70 ywmfsN7J.net
数Ⅱとかやってる場合じゃない
中学数学やり直したほうがいい
592:132人目の素数さん
17/12/08 12:17:52.19 XRj3lO4E.net
>>568
もうちょっと問題設定をきちんと書いてほしい
2次元座標の決め方と角度の測り方が定まってるなら、多分求められるけど。
593:132人目の素数さん
17/12/08 13:32:08.54 pfqfDj0R.net
>>573
これは申し訳ない。上手く文章に起こすことができないのでまたぼんやりとしてしまってるかもだけど、
原点(0,0)から角度R(0~359)傾いた距離Xの地点Pの座標を知りたいんだ
仮にRが0でXが3ならPは(3,0)になると思うんだけど、これが角度有になるとどうなるかがわからない・・・
594:132人目の素数さん
17/12/08 13:43:14.09 lAhXgUeo.net
>>574
地鶏棒は半径Rの円上にあるから、x軸とのなす角をθとして(Rcosθ, Rsinθ)じゃダメなの?
それとも三角関数の値を使わず、角度と半径だけで求めろってこと?
595:132人目の素数さん
17/12/08 14:31:23.91 lAhXgUeo.net
以下の問題に関して教えて下さい。
---問題---
R = {A = [a, -b; b, a] | Aは2次正方行列で、a, bは整数}, Z[i] = {a+bi | a, bは整数}とし、
環同型写像φ:R→Z[i]をφ([a, -b; b, a]) = a+biと定める。
このとき、A^3+3A^2+A-5E = Oとなる行列A ∈ Rを求めよ。
ただしEは単位行列とする。
----------
---回答---
RとZ[i]は同型なので、z^3+3z^2+z-5=0を満たすガウス整数zを求める。
これを解くと、z = 1, -2±i となり、いずれもガウス整数である。
よって、求める行列Aは A = E, [-2, -1; 1, -2], [-2, 1; -1, -2] の3つである。
----------
同型ということなので、行列かガウス整数の好きな方の方程式で解いてよい、という考えは間違いでしょうか。
上記回答へのご指摘や、他に解法等ありましたらよろしくお願いします。
596:132人目の素数さん
17/12/08 14:56:18.90 XRj3lO4E.net
>>574
Pの位置(カメラってことだよね)の座標は、3次元にあるから、座標3個必要。
なんだけど、説明を読ンだ限りでは、2個の座標だけで考えていいってことかな。
Pの座標は、 ( XcosR° , XsinR° ) でいいかな。
Pのある位置は、地面を原点からPのほうに XcosR°すすんだ場所の、高さXsinR°の場所です。
三角関数表はネットにあると思うけど、ラジアンではなくて度数表示の方を見てください。
597:132人目の素数さん
17/12/08 16:00:11.00 mr3YCu04.net
どなたか教えてもらえませんか?
URLリンク(imepic.jp)
598:132人目の素数さん
17/12/08 21:51:11.54 DYen32XS.net
>>576
イイでしょ
他の解法って
代入して普通に計算したら?
やることは同じだけど
599:132人目の素数さん
17/12/08 22:58:57.34 lAhXgUeo.net
>>579
ありがとう
同型について勉強不足だったようだ
600:132人目の素数さん
17/12/09 00:01:29.22 1MVrrzsU.net
>>566
そりゃあ、オイラよりガウスさんの方が遥かに上なのは言うまでもあるまい。
601:132人目の素数さん
17/12/09 00:30:15.31 hBq+3mqq.net
無>全=神
ですか?
602:132人目の素数さん
17/12/09 00:55:41.67 ReMVFl+3.net
神=イエスキリスト=精霊です
603:132人目の素数さん
17/12/09 01:01:04.52 UsNvVDeH.net
>>582
そうだよ
604:132人目の素数さん
17/12/09 03:35:48.96 Y5emEfDL.net
教授に出された問題なのですが全く分かりません。
なんとか積分に結びつける方法はないのでしょうか
Σ[k=1~∞] 1/(k^3) を計算せよ。
605:132人目の素数さん
17/12/09 03:42:24.53 3cYYAclV.net
アペリーの定数
606:132人目の素数さん
17/12/09 06:18:53.66 BRMdvIEe.net
>>425
G/K⊂H
|G/K|||G|
|G/K|||H|
|G/K|=1
G=K
607:132人目の素数さん
17/12/09 12:10:10.92 E+u4A2gJ.net
>>587
なるほど 暗算即決ですね。
いいんですが、
つかれているとできないんですうう。
608:132人目の素数さん
17/12/09 12:12:05.20 23UOas6o.net
人間は何故生まれたのですか?
609:132人目の素数さん
17/12/09 12:46:32.44 RDaSu1Jn.net
>>589
こちらへどうぞ
【数学検定】数学検定(数検)総合スレッド Part.11
スレリンク(math板)
610:132人目の素数さん
17/12/09 13:11:05.88 1MVrrzsU.net
>>585
∫∫∫_[0,∞] 1/{e^(x+y+z)- 1} dx dy dz = ζ(3),
611:132人目の素数さん
17/12/09 13:18:18.83 1MVrrzsU.net
>>583
鶏(とり)ニティ
(大意)
七面鳥を準備するのは大変なので、鶏でスマス。
612:132人目の素数さん
17/12/09 13:25:42.10 eaOHiRCH.net
>>578 の問題、画像が消えてたので改めて質問。(俺は >>578 ではありません)
下図のように2円 c1,c2 と直線 l が与えられています。
このとき直線上に点Pを取り、2円へ引いた接線が(逆向きに)同じ角をなすようにしたい。
コンパスと定規(直線を引く機能のみ。長さは測れない) のみを使って、点Pの作図方法を示してください。
(元の問題とは微妙に違っているかもしれません)
2円の内外での接触に応じて4通りあると思います。
昨日結構考えたんだけどギブアップしました。
URLリンク(o.8ch.net)
613:132人目の素数さん
17/12/09 13:48:05.39 1MVrrzsU.net
>>585
x+y+z = s とおくと
(1/2)∫[0,∞]ss/(e^s - 1)ds = ζ(3)
或いはまた
(2/3)∫[0,∞]tt/(e^t + 1)dt = ζ(3)
614:132人目の素数さん
17/12/09 14:32:23.18 1MVrrzsU.net
>>593
・円 c? の中心 o? を出す。(どうやって?)
・L上の点Q1を中心として点 o? を通る円を曳く。
・L上の点Q2を中心として点 o? を通る円を曳く。
・それらの交点を中心として円 c? と同じ半径の円を曳く。
・これは Lに関する円 c? の鏡像。
615:132人目の素数さん
17/12/09 14:40:20.55 UsNvVDeH.net
>>593
ひとつのパターンは
①直線 l に平行で c1 , c2 の中心( O1 , O2 とする)を通る直線 m , n を引く
② m に垂直で O2 を通る直線を引く
③②の直線と m の交点を H として、線分 O1H の垂直二等分線を引く
④この垂直二等分線と l の交点が P
でいけるかも
URLリンク(o.8ch.net)
616:132人目の素数さん
17/12/09 14:42:41.33 E+u4A2gJ.net
>>593
直線を鏡面として鏡映図をかけばいちころじゃん
617:132人目の素数さん
17/12/09 14:51:54.89 bdgx9wbE.net
C2をlについて対称移動
(C2の中心を求めてから、C2の中心をlと対称な位置に移して、同じ半径の円を描く)
C1,C2の4共接線をひくと、lとの交点がP
618:593
17/12/09 16:06:21.93 eaOHiRCH.net
鏡映対称でいけました、ありがとうございます。
619:132人目の素数さん
17/12/09 16:16:22.80 EoV2hBSC.net
700
620:132人目の素数さん
17/12/09 16:26:06.59 BRMdvIEe.net
>>561
|f(a)|=1
621:132人目の素数さん
17/12/09 16:57:20.57 Y5emEfDL.net
どの2つも相異なる実数からなる集合
S={a(1),a(2),...,a(n)}
を考える。また、Sから異なる要素を2つ取って積を作り、それらをすべて足し合わせたものをsとする。すなわち、
s=Product[a(i)a(j)](i≠j)
である。
このとき、以下のA、Bの大小を比較せよ。
A=s/(n^2-n)
B=[Σ{a(i)}^2]/n(i=1,2,...,n)
622:132人目の素数さん
17/12/09 19:09:22.06 CF5t7sEN.net
>>602
s=(Σ{i=1..n}[Σ{j=1..n}[a(i)a(j)] - a(i)a(i)])/2
=(Σ{i=1..n}[Σ{j=1..n}[a(i)a(j)]] - Σ{i=1..n}[a(i)^2])/2
って意味で合ってる?
623:132人目の素数さん
17/12/09 19:56:38.32 UUDq9DU9.net
>>602
《 sは、n(n-1)/2個の合計なので、A=s/(n^2-n) はA=2s/(n^2-n) の間違いじゃ無いですか? 》
以下は、分散σ^2を求める
624:ときの定義です。 μ=(1/n)Σa(i) として、 0≦σ^2=(1/n)Σ{a(i)-μ}^2=(1/n)Σ{a(i)^2-2μa(i)+μ^2}=(1/n)Σ{a(i)^2} - μ^2 つまり、よく知られた結果「二乗平均」≧「平均の二乗」が確認できます。 これをこの問題に当てはめれば、二乗平均は将に今回のBであり、 平均の二乗は、{(1/n)Σ[a(i)]}^2=(1/n^2){nB+2s}=(1/n^2){nB+(n^2-n)A} です。 (Aの定義を、レス頭のように変更してます) これを、「二乗平均」≧「平均の二乗」の式に適用すると、B≧Aが出てきます。
625:132人目の素数さん
17/12/09 20:17:11.33 CF5t7sEN.net
>>604
問題を修正しなくても
B≧2AかつB≧0だったらB≧Aと言っていいんじゃない?
626:132人目の素数さん
17/12/09 22:42:01.22 Qr1ywleB.net
ab+ba.
627:132人目の素数さん
17/12/10 00:51:25.02 inlDv6rP.net
Σ[i,j]{a(i)-a(j)}^2
= Σ[i,j]{a(i)^2+a(j)^2} - 2Σ[i,j]a(i)a(j)
= Σ[i,j]a(i)^2 + Σ[i,j]a(j)^2 - 2{Σ[i]a(i)^2 + s}
= 2nΣ[i]a(i)^2 - 2Σ[i]a(i)^2 - 2s
= 2(n-1)Σ[i]a(i)^2 - 2s
≧0 から B≧A
628:132人目の素数さん
17/12/10 00:55:51.24 OKa6WmRp.net
以下の問題で直観的な解答を出したら、先生から△を食らいました。
まだ聞きに行ってないので理由は分かりません、自分ではスマートな解答だと思ったのですが何処がいけなかったのでしょう。
【問題】
aを実数とする。
(1)3辺の長さがa,a+1,a-1であるような三角形が存在するとき、aの範囲を求めよ。
(2)(1)の三角形の面積をSとするとき、極限 lim[a→∞] S/a^2 を求めよ。
【自分の解答】
(1)は省略
(2)aが大きくなっていくと、a+1/a→1、a-1/a→1となるから、この三角形の形状は限りなく正三角形に近づく。
一辺の長さaの正三角形の面積は√3a^2/4だから、求める極限は√3/4
629:132人目の素数さん
17/12/10 01:12:02.89 gbMHi2WX.net
神や全でも無には勝てませんか?
630:132人目の素数さん
17/12/10 01:14:28.56 inlDv6rP.net
正三角形に近づくけど、a-1<a<a-1 だから正三角形には絶対ならないから面積の式はおかしいよね。
三辺の長さが分かれば面積は計算できる。
631:132人目の素数さん
17/12/10 01:16:13.61 inlDv6rP.net
a-1<a<a+1 でした
632:132人目の素数さん
17/12/10 01:22:59.55 OKa6WmRp.net
>>610
感覚的には、
例えばa=1000000000のとき、
a-1 =999999999、
a+1=1000000001で、
+1も-1もゴミだと思って(極限に影響を与えないと考えて)解答したのですが、
感覚では解答にならない、計算をきちんとすることで論証しなければならない、ということでしょうか
633:132人目の素数さん
17/12/10 01:40:16.60 RVacvmkT.net
「限りなく近づく」を使って解答を書くなら、もっと詰めた解答にしないと適当解答扱いだよ。
ランダウの記号でも引っ張り出して処理すれば正解になる・・・かなぁ。
でもこれって、いわゆる無限大をかけてから無限大で割る操作をしているような気がする。
634:132人目の素数さん
17/12/10 01:53:18.22 ieniCcbp.net
この場合三角形の面積はaの二次式になるんじゃね
635:132人目の素数さん
17/12/10 02:52:13.82 LeE6ewIM.net
>>608
直感は間違えることもあるからです
636:132人目の素数さん
17/12/10 03:04:32.64 Bcaa7Btv.net
>>608
高校のテストですからねー
極限をイプシロンデルタとかでちゃんと定義してるわけではなく、限りなく近くとかで誤魔化してるわけですから、あなたの論法を丸にしないのは「論理的には」間違いなんです
でも、その回答が間違いになるのは、テストでは学校で習った方法を使わなければいけないという制限があるからですね
今回の場合は、正三角形に限りなく近く、とありますが、図形に近づける極限なんて習ってないわけですから、ダメなんです
だから、学校のテストの本質は掛け算順序なんですよねー
極限�
637:ナは答えはあってるのに間違うことがあるかもしれないから間違え 掛け算では答えはあってるのに間違えとするのは間違え 非可換な掛け算もあるというのに 矛盾してますよね、本当
638:132人目の素数さん
17/12/10 03:05:07.92 Bcaa7Btv.net
思ったんですけど、正三角形に限りなく近くなんてことは数学的に定義できるんですか?
639:132人目の素数さん
17/12/10 04:12:54.66 1zPKMN/X.net
同じ近づくにしても「一重に」近づくのと「二重に」近づくのとでは差異が出るとか普通に起きるしな
640:132人目の素数さん
17/12/10 04:37:03.89 ieniCcbp.net
正三角形に近づくって直感で考えるなら
a+1でa→+∞
より
a+εでε→+0
の方がそれっぽいけどね
辺の長さが無限大に発散するってイメージしにくい
641:132人目の素数さん
17/12/10 04:56:06.93 5sZNQm7X.net
初項log_2x、公比log_2(-x^2 +2x +1)の無限等比級数が、収束するための条件と、そのときの和
642:132人目の素数さん
17/12/10 04:56:51.43 5sZNQm7X.net
初項log_2x、公比log_2(-x^2 +2x +1)の無限等比級数が、収束するための条件と、そのときの和
643:132人目の素数さん
17/12/10 07:24:48.50 pXwUchTf.net
>>616
その論理は 8×7+17=73 を不正解にした
バカ教師と同じだな
644:132人目の素数さん
17/12/10 07:28:23.64 pXwUchTf.net
>>608
(S - (√3/4)a^2)/a^2 → 0 を
直感で済ましてるから減点なのでは?
645:132人目の素数さん
17/12/10 07:34:14.92 uQazz2vD.net
>>616
学校のテストができなかったんだね...
646:132人目の素数さん
17/12/10 11:54:22.35 hsJSvLEX.net
間違え
647:132人目の素数さん
17/12/10 12:08:06.05 RVacvmkT.net
>>625
これ、掛け算順序関係なし派へのネガキャンの一種だろう
これと一緒にされたくはないよ
648:132人目の素数さん
17/12/10 12:13:56.60 50GhRKsZ.net
>>608
√3/4*(a-1)^2/a^2 < S/a^2 < √3/4*(a+1)/a^2
a→∞ ⇒ √3/4*(a-1)^2/a^2 → √3/4, √3/4*(a+1)/a^2 → √3/4
∴a→∞ ⇒ S/a^2 → √3/4
これくらいは書かないといけないんじゃないの
649:132人目の素数さん
17/12/10 13:04:58.92 Bcaa7Btv.net
学校のテストには作法があります
学校のテストができるとは、その作法にどれだけのっとれるかということです
高校の極限が直感によって定義されていて答えがあっているのにも関わらず、定義通りの直感で答えて間違えにされるのはおかしいですよねー
650:132人目の素数さん
17/12/10 13:09:57.86 Bcaa7Btv.net
たとえば、東大入試の円周率が3.05より大きいことを証明せよ
こんなのはπ>3.14だから自明、でいいわけですよ
これが間違えにされるのは、そういう具体的な値は既知ではないとして考えろ、という暗黙の了解があるからです
651:132人目の素数さん
17/12/10 13:13:57.24 uQazz2vD.net
>>628
学校のテストができなかったんだね...
652:132人目の素数さん
17/12/10 13:16:03.28 Bcaa7Btv.net
>>630
学校のテストとは、2×3は正解だけど、3×2は間違えになるようなテストのことですよね?
653:132人目の素数さん
17/12/10 13:16:55.24 Bcaa7Btv.net
ま私は順序固定にでも問題ないと思ってる派ですけど
654:132人目の素数さん
17/12/10 13:19:18.91 uQazz2vD.net
>>631
できなかったんですよね?
655:132人目の素数さん
17/12/10 13:20:55.11 Bcaa7Btv.net
>>633
私はできてたと思いますよ
多分100点以外とったことないですから
忘れましたけど
656:132人目の素数さん
17/12/10 13:21:57.45 uQazz2vD.net
>>634
それはさぞ優秀な大学に進学されたでしょうね
東大ですか?京大ですか?
657:132人目の素数さん
17/12/10 13:35:04.44 Bcaa7Btv.net
>>635
小学校の話ですよね?
658:132人目の素数さん
17/12/10 13:43:02.23 uQazz2vD.net
>>636
>>608の続きですね
659:132人目の素数さん
17/12/10 13:43:42.10 mi5Qw+9g.net
くだらん事書くな
660:132人目の素数さん
17/12/10 14:17:56.29 LeE6ewIM.net
分かっている事実と論理だけで解答が得られるものを直感的な部分に頼るやり方でやって丸にならないのは、テストだからとかではなく数学的に当たり前
高校だからとか云々の問題ではない
661:132人目の素数さん
17/12/10 14:25:47.94 bZV8J1/5.net
なんでそんな方針思い付いたの?って疑問に答えてない天下りな表面的なブルバキズムも相当批判され続けてるけどな。
662:132人目の素数さん
17/12/10 15:34:46.68 gFQM
663:K9Wr.net
664:132人目の素数さん
17/12/10 19:57:36.48 W/9Gj/R8.net
>>620-621
・x=1 のとき
初項 0、公比 r=1 収束、和 0.
・0<x,x≠1 のとき
-1 < r = log_(-xx+2x+1)≦ 1,x≠1
1/2 < -xx+2x+1 < 2,x≠1
0 < x < 1 + √(3/2),x≠1 のとき収束
和 log_2(x) / (1-r)
665:132人目の素数さん
17/12/10 20:20:11.70 Udj3mdhm.net
お願いします。
文明堂高級カステラを買いました。「文明堂五三カステラ」
美味しく食べながら同封されていたしおりを読むと
「通常より卵黄を三割増しにして卵黄と卵白の割合を五対三にしました。」
と書いてありました。ふむふむ、じゃあ通常のカステラの卵黄と卵白の割合は、、、
130:X=5:3 あれ?
計算法が分かりません。あとこれは小中高何年生くらいの問題でしょうか?
666:132人目の素数さん
17/12/10 20:30:58.70 RVacvmkT.net
>>643
小6の問題
ミルクと何かでそっくりな問題がある
ていうか、元ネタはカステラかよ・・・
面白いこと教えてくれてサンキューw
667:132人目の素数さん
17/12/10 20:51:13.65 gFQMK9Wr.net
正確な求め方はともかく、4のものを5にしたら「三割増」と表示しても通るよねとか思ったよ
卵白の3を固定したとして、X:5=100:130としたらX÷5=100÷130だからX=3.85位にはなる
内項の積とか外項の積とか小中学のどの学年で出るかは知らない
668:132人目の素数さん
17/12/10 21:19:49.17 Udj3mdhm.net
645 ありがとう
669:132人目の素数さん
17/12/11 04:35:08.68 bpNZSCGN.net
ピタゴラス教団とウィンザー朝はどっちの方が凄いですか?
670:132人目の素数さん
17/12/11 08:26:08.16 EEIh+y2n.net
アッパー・イースト・サイドに住みてえ。
671:132人目の素数さん
17/12/11 08:36:11.85 EEIh+y2n.net
イエス・キリスト vs 英国王室
どっちが勝つ?
672:132人目の素数さん
17/12/11 08:43:48.66 iFFP4S+k.net
f(x, y) = x*y*(x^2 - y^2) / (x^2 + y^2)
| f(x, y) | ≦ 6 * sqrt(x^2 + y^2)
が成り立つと本に書いてあります。
| f(x, y) | ≦ 7 * sqrt(x^2 + y^2)
は示せましたが、 7 を 6 に下げることができないでいます。
お願いします。
673:132人目の素数さん
17/12/11 08:55:32.15 EEIh+y2n.net
アインシュタインと英国王室はどっちの方が凄いですか?
674:132人目の素数さん
17/12/11 09:06:12.40 iFFP4S+k.net
>>650
7 を 3 まで下げることに成功しました。
675:132人目の素数さん
17/12/11 09:09:10.28 iFFP4S+k.net
訂正します:
f(x, y) = x*y*(x^2 - y^2) / (x^2 + y^2)
| ∂f(x, y) / ∂x | ≦ 6 * sqrt(x^2 + y^2)
が成り立つと本に書いてあります。
| ∂f(x, y) / ∂x | ≦ 7 * sqrt(x^2 + y^2)
は示せましたが、 7 を 6 に下げることができないでいます。
お願いします。
676:132人目の素数さん
17/12/11 09:18:39.83 iFFP4S+k.net
>>653
f(x, y) = x*y*(x^2 - y^2) / (x^2 + y^2)
| ∂f(x, y) / ∂x |
=
| y | * | 1 + [2*y^2 / (x^2 + y^2)] * [1 - 2*y^2 / (x^2 + y^2)] |
≦
| y | * ( 1 + [2*y^2 / (x^2 + y^2)] * | 1 - 2*y^2 / (x^2 + y^2)] |
0 < y^2 / (x^2 + y^2) ≦ 1
だから
| y | * ( 1 + [2*y^2 / (x^2 + y^2)] * | 1 - 2*y^2 / (x^2 + y^2)] |
≦
| y | * ( 1 + [2*y^2 / (x^2 + y^2)]
≦
| y | * ( 1 + 2)
=
3 * |y|
≦
3 * sqrt(x^2 + y^2)
677:132人目の素数さん
17/12/11 09:19:29.52 iFFP4S+k.net
3 からもっと下げられそうな気がするのですが、どうですか?
678:132人目の素数さん
17/12/11 09:22:31.75 iFFP4S+k.net
5/4 まで下げることに成功しました。
679:132人目の素数さん
17/12/11 09:26:55.32 iFFP4S+k.net
f(x, y) = x*y*(x^2 - y^2) / (x^2 + y^2)
| ∂f(x, y) / ∂x |
=
| y | * | 1 + [2*y^2 / (x^2 + y^2)] * [1 - 2*y^2 / (x^2 + y^2)] |
0 < y^2 / (x^2 + y^2) ≦ 1
だから
-1 = 1 - 2 ≦ 1 + [2*y^2 / (x^2 + y^2)] * [1 - 2*y^2 / (x^2 + y^2)] ≦ 1 + 1/4 = 5/4
よって、
| y | * | 1 + [2*y^2 / (x^2 + y^2)] * [1 - 2*y^2 / (x^2 + y^2)] |
≦
| y | * (5/4)
=
(5/4) * | y |
≦
(5/4) * sqrt(x^2 + y^2)
680:132人目の素数さん
17/12/11 09:28:02.85 iFFP4S+k.net
もっと下げられる人いますか?
681:132人目の素数さん
17/12/11 09:37:59.26 EEIh+y2n.net
メキシカンマフィアとイギリスはどっちの方が残虐残酷劣悪非道畜生ですか?
682:132人目の素数さん
17/12/11 09:56:41.97 rEUhHdWG.net
1まで下げられる
ただし等号がつく
683:132人目の素数さん
17/12/11 09:59:46.00 EEIh+y2n.net
キリスト教と大英帝国はどっちの方が偉大ですか?
684:132人目の素数さん
17/12/11 10:14:09.24 73Pkg5Cj.net
今日の松坂君IDiFFP4S+k
685:132人目の素数さん
17/12/11 10:16:29.85 3qubGoP/
686:.net
687:132人目の素数さん
17/12/11 10:17:54.24 ol+fHHp7.net
毎日一つずつNGIDが増えていく
688:132人目の素数さん
17/12/11 10:27:40.20 iFFP4S+k.net
>>663
それは書き間違いでした。
>>653
で訂正しまています。
689:132人目の素数さん
17/12/11 10:30:04.38 73Pkg5Cj.net
ID:EEIh+y2nは物理板で有名な荒らしのヒマラヤ
690:132人目の素数さん
17/12/11 10:53:29.63 WPERr9CH.net
>>663
f'(a cos(t),a sin(t))=(3 sin(t)-sin(5t))/4 =< 1
691:132人目の素数さん
17/12/11 10:57:48.11 ineNYooM.net
お礼が遅くなってしまいましたが
>>575様、>>577様、
本当にありがとうございました!問題が解決しました!本当にありがとうございます!
ちなみになんでこんなわけわかんない事聞いたかっていうと
ガッコの課題でドローンを自律飛行させるんですが、その飛行経路組むのに必要で聞いてました
本当にありがとうございます・・・・!
692:132人目の素数さん
17/12/11 11:41:08.22 3qubGoP/.net
>>665 よく見てなかったごめん。
f(x,y) = ... = (1/4) r^2 sin4θ
∂r/∂x = x/r = cosθ
tanθ' ∂θ/∂x = ∂/∂x{ y/x } ∴ ∂θ/∂x = -y/r^2 = -sinθ/r
より
∂f/∂x = (1/2) r cosθ sin4θ + r^2 cos4θ (-sinθ/r)
= r ( (1/4) (sin5 + sin3θ) - (1/2) (sin5θ - sin3θ) )
= r ( -(1/4) sin5 + (3/4) sin3θ )
|∂f/∂x| ≦ r ( |1/4| + |3/4| ) ≦ 1 * r であり、
また θ=3π/2 にて ∂f/∂x = r *( -(1/4)*(-1) + (3/4)*(+1) ) = 1 * r (等号も成り立つ)
|∂f/∂x| ≦ 1 * sqrt(x^2+y^2)
つまり 1 がミニマムです。
693:132人目の素数さん
17/12/11 11:57:26.44 WPERr9CH.net
667
694:132人目の素数さん
17/12/11 12:00:58.02 EEIh+y2n.net
大日如来とレオンハルト・オイラーはどっちの方が凄いですか?
695:132人目の素数さん
17/12/11 12:22:24.69 WPERr9CH.net
ヒトラー
696:132人目の素数さん
17/12/11 12:40:07.03 oHy4Fo5D.net
【医学詐欺3連発!】インフルエンザ予防接種・アマルガム虫歯治療・マンモグラフィー乳癌検診
スレリンク(liveplus板)
697:132人目の素数さん
17/12/11 13:03:39.57 6+Vtt3FO.net
物理の実験で誤差は標準偏差の二倍にすればいいって言われました
正規分布などについてのおすすめの本教えてください
機械工で統計の授業がないためセンターテスト程度の知識しかありません
698:132人目の素数さん
17/12/11 14:17:06.71 yQ0RpLJ+.net
全宇宙は何円ですか?
699:132人目の素数さん
17/12/11 17:11:54.28 WPERr9CH.net
十三モン
700:132人目の素数さん
17/12/11 20:24:23.30 XSNFuSYl.net
日本人は全員ゴミ
701:132人目の素数さん
17/12/11 20:27:28.70 t6OSAE7s.net
nを2以上の整数とするとき n(n+1)(2n+1)/6 が平方数になるのはn=24(=70^2)だけなんでしょうか?
702:132人目の素数さん
17/12/11 23:25:15.49 tUimATQJ.net
>>678
n(n+1)(2n+1)/6 = m^2 (m, nは自然数)なら、
x, y, z を整数として
(1) : n/6 = x^2
(2) : n+1 = y^2
(3) : 2n+1 = z^2
を満たすx, y, z の組がある
[(3)からz^2は奇数 : zは奇数]
(1)より n = 6*x^2
これを(2)に代入 6*x^2 = y^2 - 1
[ここでy^2も奇数とわかる : yは奇数]
同様に(3)に代入 12*x^2 = z^2 - 1
よって6*x^2 = z^2 - y^2
ここで詰んだ
703:132人目の素数さん
17/12/11 23:52:26.71 DMRdNcXy.net
なんでやねーん
704:132人目の素数さん
17/12/12 00:06:25.97 DfQwB48T.net
{m,n}={{-70,24},{-1,1},{1,1},{70,24}}
705:132人目の素数さん
17/12/12 00:44:59.54 kXuLuFFS.net
平方ピラミッド問題
で検索かな
706:132人目の素数さん
17/12/12 00:45:14.44 A7tAwVS8.net
>>653-658
{∂f(x,y)/∂x}/√(xx+yy)= Y(1+2YY-4Y^4),
ここに、Y = y/√(xx+yy),|Y|≦1,
1 - Y(1+2YY-4Y^4) =(1+Y){(1-Y)^2 +YY(1-2Y)^2}≧ 0,
1 + Y(1+2YY-4Y^4)=(1-Y){(1+Y)^2 +YY(1+2Y)^2}≧ 0,
(極座標を使わなくても)
>>671
そりゃ、大日如来さまはオイラよりずっと凄いけど。
707:132人目の素数さん
17/12/12 00:57:22.55 HrIyXIFI.net
>>683
大日如来とカール・フリードリヒ・ガウスはどっちの方が凄いですか?
708:132人目の素数さん
17/12/12 01:07:40.75 d9lW6Bob.net
>>682
おお
一応正しい道を進んでたが補題の証明の辺りで力尽きてたわ
709:132人目の素数さん
17/12/12 01:20:12.13 nBlj0+XH.net
>1^2 + 2^2 + 3^2 + ・ ・ ・ + 23^2 + 24^2 = 70^2
>この等式は,モンスター単純群と関連しているのではとも言われています。
>しかし,きちんとした数学的な解釈は与えられておらず,今後に残された課題なのです。
URLリンク(www.s.chiba-u.ac.jp)
モンスター群調べてみてもどう関連しているのかどこにも見つからないんだけど
検索の仕方が悪いのかなぁ?
710:132人目の素数さん
17/12/12 01:28:28.46 H8wC4JgV.net
>>679
>n(n+1)(2n+1)/6 = m^2 (m, nは自然数)なら、
>x, y, z を整数として
>(1) : n/6 = x^2
>(2) : n+1 = y^2
>(3) : 2n+1 = z^2
>を満たすx, y, z の組がある
なわけねーじゃんw
711:132人目の素数さん
17/12/12 01:50:49.02 A7tAwVS8.net
>>592
七面鳥 = 鶏 = 月給取
をトリニティというらしい
712:132人目の素数さん
17/12/12 01:56:42.43 d9lW6Bob.net
>>687
えっ
713:132人目の素数さん
17/12/12 04:20:51.81 iDdrzTZv.net
>>678
nとn+1はn≧2で互いに素
714:132人目の素数さん
17/12/12 04:54:47.53 fJpjzm18.net
広義積分
∫(0→∞)1/(1+x^√2) dx
を求めよ
という問題なのですが、解けそうで全く歯が立ちません
あらゆる置換を試したのですがダメでした
解法のご教示お願い致します
715:132人目の素数さん
17/12/12 07:26:07.21 xnwEjjks.net
t=1/(1+x^√2) とおけ
716:132人目の素数さん
17/12/12 07:48:48.26 KoHTRart.net
>>692
置いた後にどうすれば良いでしょうか?
717:132人目の素数さん
17/12/12 09:34:46.67 CU5rJ1ha.net
頭が良くなりたいのに全然良くなりません
やはり自殺するより他はないのでしょうか?
718:132人目の素数さん
17/12/12 10:23:18.45 rVa2ccyM.net
水理学の開水路における台形と円の水理幅、潤辺、流積の公式の証明を教えてください。。。
お願いします。。
719:132人目の素数さん
17/12/12 10:23:31.50 CU5rJ1ha.net
自分より頭のいい人を殺しても罪にはならないという法律を設定するべきだと思います
どうでしょうか?
720:132人目の素数さん
17/12/12 10:24:10.80 H8wC4JgV.net
>>691
∫[0,∞]1/(1+x^(t>1))dx=1/sinc(π/t)
うーむ
721:132人目の素数さん
17/12/12 10:44:26.40 QEHAM81o.net
>>691
岩波の数学公式I の Mellin変換の型の定積分のコーナーに、0<a<bの時
∫[0,∞]x^(a-1)dx/(1+x^b)=(π/b) cosec(aπ/b)
というのが載ってます。
722:132人目の素数さん
17/12/12 11:24:29.67 JKRd
723:1te6.net
724:132人目の素数さん
17/12/12 11:25:27.20 O8SYnJpl.net
>>691
α=√2, β=1/α, t=x^α と置く
x=t^β, dx= β t^{β-1} dt
よって
∫ [0,+∞]dx 1/(1+ x^α) = ∫ [0,+∞]dt β t^{β-1} /(1+t)^{β+ 1-β}
= β B(β, 1-β) = β Γ(β) Γ(1-β) / Γ(1)
= π β / sin(π β)
使った公式
・B(x,y) = ∫ [0,+∞]dx t^{x-1}/(1+t)^{x+y} (ベータ関数の積分表示)
・B(x, y)= Γ(x)Γ(y)/Γ(x+y)
・Γ(x)Γ(1-x) = π/sin(πx) (オイラーの相反公式)
よく使うので覚えておいて損はないでしょう。
725:132人目の素数さん
17/12/12 11:33:02.52 JKRd1te6.net
メキシカンマフィアとフランス軍が戦ったらどっちが勝ちますか?
726:700
17/12/12 11:34:14.60 O8SYnJpl.net
今気づいたけど
α>1 なので、 1-β = 1-1/α > 0 (ベータ関数積分表示の条件) が保証されてるわけです。
727:132人目の素数さん
17/12/12 11:49:33.54 HUHqGIpY.net
>>694>>696
逆に考えるんだ。バカは利口な人間様のペットとして調教される義務があるのだと。
728:132人目の素数さん
17/12/12 12:27:09.88 oqoXHBIL.net
メキシカンマフィアと大英帝国はどっちの方が凄いですか?
729:132人目の素数さん
17/12/12 12:29:54.73 sp1uSTXS.net
殺したい
730:132人目の素数さん
17/12/12 12:33:38.11 HUHqGIpY.net
エイズでも貰ってきて色仕掛けで伝染して回れば?。
実際フランスの知識人とか政府高官とかエイズの伝染し合いっこ貰いっ子貰われっ子でだいぶくたばってるよ。同性間での感染も含めて。
731:132人目の素数さん
17/12/12 12:50:30.17 oqoXHBIL.net
鬼神と魔神はどっちの方が凄いですか?
732:132人目の素数さん
17/12/12 12:57:59.21 sp1uSTXS.net
>>706
病気とかではなく、自分の手で虐殺したいんです
733:132人目の素数さん
17/12/12 13:31:52.13 6tYmd77O.net
ロスチャイルド家の始祖とイギリス王室の開祖はどっちの方が偉大ですか?
734:132人目の素数さん
17/12/12 14:09:32.49 HUHqGIpY.net
>>708
じゃあ自分より知能が高そうなやつの精子買ってきて流産でもしまくれば?。
近親憎悪はいいぞ。一番恨み骨頂だ。
735:132人目の素数さん
17/12/12 14:12:21.36 oHiJGGf1.net
ヒマラヤと同程度の知能
736:132人目の素数さん
17/12/12 14:17:53.49 HUHqGIpY.net
>>711
生まれる前は似たり寄ったりの精子だったのにね。
737:132人目の素数さん
17/12/12 15:16:28.04 iSyLBHJk.net
>>710
残念ながら私は男性です
738:132人目の素数さん
17/12/12 15:26:22.22 4nAPr7SE.net
三角不等式で両辺の絶対値をとった
||a|-|b||≦|a-b|
は成り立ちますか?
739:132人目の素数さん
17/12/12 15:47:53.16 O8SYnJpl.net
>>714
|a| - |b| ≦ | a - b |
|b| - |a| ≦ | b-a | = | a - b |
| |a| - |b| | = max(|a|-|b|, |b|-|a|) ≦ | a - b |
740:132人目の素数さん
17/12/12 16:50:56.14 UjGeQvJO.net
>>697
>>698
>>700
ありがとうございます!!
741:132人目の素数さん
17/12/12 17:47:14.38 fg4nLu4f.net
>>714
それも三角不等式ですよ
742:132人目の素数さん
17/12/12 19:10:56.07 LgRN09Oi.net
URLリンク(i.imgur.com)
練習126(1)の
「-b<k-l<b ゆえにk-l=0」
の部分がわかりません
例えばb=3,k=2,l=1は問題の条件及び-b<k-l<bを満たしてますがk-l=0とはなりません
どういうことでしょうか?
743:132人目の素数さん
17/12/12 19:18:41.30 tUr9d/PY.net
k - l は b の倍数
744:132人目の素数さん
17/12/12 19:19:44.66 LgRN09Oi.net
>>719
ありがとうございました
745:132人目の素数さん
17/12/12 20:53:58.36 mBt6XIq0.net
ユダヤとアングロサクソンはどっちの方が上ですか?世界への影響力的に考えて。
746:132人目の素数さん
17/12/12 21:21:38.53 1BGQrCsV.net
ユダヤですね
747:132人目の素数さん
17/12/12 21:25:02.56 mBt6XIq0.net
>>722
理由を教えてください。
748:132人目の素数さん
17/12/12 21:38:16.27 QKTQC08e.net
>>723
うんこぶりぶり
749:132人目の素数さん
17/12/12 21:43:37.55 AEFW4aOD.net
>>724
ヒュー・エヴェレット3世と大英帝国はどっちの方が偉大ですか?
750:132人目の素数さん
17/12/12 22:35:25.11 xUQ0pjYE.net
「あらゆる全て」が唯一超えられないもの、それが「無」。
これは正しいですか?
751:132人目の素数さん
17/12/12 23:07:32.07 Dj3+3E90.net
ビル・ゲイツとマキシム・コンツェビッチはどっちの方が頭が良いですか?
752:132人目の素数さん
17/12/13 01:08:49.99 1Nr7f0T9.net
両方共バカです。 あなたが一番偉い
753:132人目の素数さん
17/12/13 01:27:12.39 XFLOTDs1.net
URLリンク(youtu.be)
この動画で出てくる三角錐の体積と最小の見かけ上の面積の関係式知りたいんですけど、わかる人いますか。
ちなみに数学の中でもどういう分野に近いですか?
754:132人目の素数さん
17/12/13 02:17:05.30 Zm7XTPvZ.net
人生に飽きた。自殺したい。
755:132人目の素数さん
17/12/13 03:53:50.64 +tWBEZWV.net
初等幾何(空間図形)
正四面体の体積は中学でやる
見かけ上の正方形は、この正四面体を埋め込んだ立方体の一面に相当する
ところでこれの正八面体ver.が1990年の東大入試で出ている
756:132人目の素数さん
17/12/13 10:29:18.60 2b6xgB1p.net
ユニクロのヒートテックなんですが
普段はあまり暖かくなく、暖かい部屋に入ると不要なほど発熱します
これを数学で表すことはできるでしょうか?
また、数学で気温が寒いときにもヒートテックが暖かくなるように解決する事はできるでしょうか?
757:132人目の素数さん
17/12/13 11:24:19.41 mmuQWU7a.net
小平邦彦さんが以下のように書いています:
「形式主義によれば、数学はそれ自身は意味をもたない記号を
与えられたルールに従って並べて行くゲームに過ぎない」
証明を読むということは記号列を読むということになるかと思います。
ある記号列が人間にとって難しく感じられ、
ある記号列が人間にとって簡単に感じられる
のはなぜでしょうか?
758:132人目の素数さん
17/12/13 11:25:29.05 mmuQWU7a.net
難しいさを定量的に定めることは可能でしょうか?
759:132人目の素数さん
17/12/13 11:29:23.48 dcfpbc4E.net
>>733
記号というのは、人間がある事柄を表すために使う文字列のことです
すなわち、文章や数式といったものも記号なのです
学校の試験でも国語の問題とか数学の問題で出来る出来ないが分かれますよね
それと同じなんですね
760:132人目の素数さん
17/12/13 11:58:50.03 IInGjIF+.net
江古田ちゃんと小枝ちゃんはどちらの方がしょうもない芸人ですか?
761:132人目の素数さん
17/12/13 12:24:28.95 0xxtjjxx.net
そんなことして楽しい?
762:132人目の素数さん
17/12/13 12:37:10.82 mmuQWU7a.net
Mathematica で松坂和夫著『解析入門3』の p.162 問題14.2.10 を解かせてみました。
多変数の Taylor 多項式の計算です。
763:132人目の素数さん
17/12/13 12:37:23.96 mmuQWU7a.net
URLリンク(i.imgur.com)
764:132人目の素数さん
17/12/13 14:44:30.69 3PBJxXr1.net
そんなん、手でやれよ。
765:132人目の素数さん
17/12/13 15:08:35.65 /TWnQA9m.net
URLリンク(books.google.co.jp)
下から2,3行目に線�
766:^写像が存在するとありますが、どのようにして△_nを線型空間とみているのでしょうか
767:132人目の素数さん
17/12/13 15:29:21.02 bVgjW93i.net
>>741
それ一般的には単体写像(simplicial map) て言われてるやつです。
まず頂点写像ありきで、他の点の写像が線形(linear)補間されるわけです。
言葉の誤用/誤植ってほどではないかと思いますが紛らわしいですね。
ベクトル空間の "線形写像" とは別物です。
768:132人目の素数さん
17/12/13 15:40:24.10 /TWnQA9m.net
>>742
丁寧な回答をありがとうございます
769:132人目の素数さん
17/12/13 17:58:01.39 vwTQbFRw.net
例
1つの剣に装飾品が3つ付いていますす。
その装飾品は1つ辺り3%の確率でクリティカルが出る仕様になっています。
一撃につき何%でクリティカルが
出るでしょう?
単純に9%だと思ってたのですが、仮に装飾品が2つと考えて1つ50%と仮定した場合100%にはならないなと想像したら全く答えが見つからなくなりました。
どなたかよろしくお願いします。
770:132人目の素数さん
17/12/13 18:11:05.84 gNGMfg74.net
>>744
ひとつの武器でクリティカルが出ない確率が97%
3つともクリティカルが出ない確率が0.97の3乗
クリティカルがどれかの武器で出る確率は
1-0.97^3=0.087327でおおよそ8.7%
50%の場合も同じ考えでやれば100%を越えることはない
771:132人目の素数さん
17/12/13 18:25:06.18 vwTQbFRw.net
>>745
モヤモヤが晴れました
お早い返答ありがとうございました
772:132人目の素数さん
17/12/13 19:01:45.31 7Rrvsl+N.net
∫(xsinx)/(1+|cosx|)dxのxが[0,π]区間での積分はどう求めればいいんですか?
773:132人目の素数さん
17/12/13 20:46:31.65 nLTxve4u.net
ドーナツとコーヒーカップが同相とwikipediaで見たんですけど
これ証明ってどうやってやるんですか?
774:132人目の素数さん
17/12/13 21:13:40.42 dcfpbc4E.net
連続写像を作ればよいですね
直感的に明らかにそういうものが作れます
775:132人目の素数さん
17/12/13 21:14:36.54 dcfpbc4E.net
連続というか同相写像ですけど
776:132人目の素数さん
17/12/13 22:03:12.18 mmuQWU7a.net
トポロジーでは、直観的に明らかといっていい加減にせざるを得ないところがあるということですか。
逆に、ここは厳密に数学的にやるというところはどこですか?
777:132人目の素数さん
17/12/13 22:10:10.54 3PBJxXr1.net
困った時には、おいらに任せなさい。
778:132人目の素数さん
17/12/13 22:18:33.74 dcfpbc4E.net
>>751
厳密さを追求すれば、まずは同相云々の前にドーナツやコーヒーカップを定義しなければなりません
ユークリッド空間上に「お絵描き」するわけです
その上で、写像を構成していくわけですが、それはとってもめんどくさいですよね
面倒な上に得られるものはそれほど大したものではないわけです
やりたい人がやれば良い程度のことなわけですね
私はやる気が起きませんけど
779:132人目の素数さん
17/12/13 22:37:12.25 7uj1goCd.net
>>747
積分区間を [0, π/2] と [π/2, π] に分けて
後者に x → π - x の置換積分を施すと
π ∫[0, π/2] sin(x) dx/(1 + cos(x))
となるので、さらに u = cos(x) とでも置換して
π ∫[0, 1] du/(1 + u) = π log(2)
780:132人目の素数さん
17/12/13 22:41:32.89 3PBJxXr1.net
残念
781:132人目の素数さん
17/12/13 23:06:28.76 6knSgPwG.net
東大史上最高の天才は小平邦彦氏ですか?
782:132人目の素数さん
17/12/14 00:58:43.63 BG0HQM59.net
>>585
Σ[k=1~∞]1/(k^3)= ζ(3)= (2ππ/7)
783:log(2)+(16/7)∫[0,π/2]x・log{sin(x)}dx オイラー
784:132人目の素数さん
17/12/14 01:30:26.70 1USsaXZB.net
白と黒の玉がたくさん入った箱から無作為に玉を100個取り出したとき、白い玉が30個で黒い玉が70個だったとします。このとき箱の中の白い玉の割合が3割である確率はどのくらいになるのでしょうか
785:132人目の素数さん
17/12/14 01:50:07.20 4L7xZd2l.net
ガウス vs ノイマン
天才対決。
786:132人目の素数さん
17/12/14 02:07:04.10 4L7xZd2l.net
数学ってマジでキチガイじみてる学問だよな・・・・・。
神は超天才数学者らしいけど、本当にそうかもな・・・・・。
なんじゃこりゃ・・・?
URLリンク(ja.wikipedia.org)(%E6%95%B0%E5%AD%A6)
数学にはこんな概念まであるのかよ・・・・・。
787:132人目の素数さん
17/12/14 02:11:10.69 4L7xZd2l.net
あれっ、リンクがちゃんと貼れてない。
まぁいっか。
788:132人目の素数さん
17/12/14 03:09:03.45 bruE5e40.net
線形写像F: P3→P2を
F(p(x))=p(x+1)-p(x)+(x^2)p(0) で定める
このとき、P3の基底1,x,x^2,x^3 とP2の基底1,x,x^2 に関する
Fの表現行列を求めよ
この問題の解説お願い致しますm(_ _)m
初歩的で申し訳ありません
789:132人目の素数さん
17/12/14 07:34:43.99 6JZcdmpV.net
各基底をe1..., e1'.. で表すとして、
F([e1, e2, e3]) = [e1', e2'] A (Aは 2x3 行列)
このAを求めろって話。
Fの定義見れば、ちゃんと
3次以下の多項式 → 2次以下の多項式 の線形写像になってるから
あとは手計算で問題なくいけるでしょ。
790:132人目の素数さん
17/12/14 07:37:29.37 6JZcdmpV.net
誤: F([e1, e2, e3]) = [e1', e2'] A (Aは 2x3 行列)
正: F([e1,...,e4]) = [e1,..,e3] A (Aは3x4行列)
791:132人目の素数さん
17/12/14 07:38:20.51 6JZcdmpV.net
再訂正...
誤: F([e1,...,e4]) = [e1,..,e3] A (Aは3x4行列)
正: F([e1,...,e4]) = [e1',..,e3'] A (Aは3x4行列)
792:132人目の素数さん
17/12/14 09:28:51.64 LK6zD3QJ.net
微分積分の本に、多変数関数の微分が定義されていますが、
開集合で定義された関数についてのみ定義されています。
孤立点を含まない集合であれば定義できるのではないでしょうか?
793:132人目の素数さん
17/12/14 09:51:13.81 OOChj/vx.net
境界上での微分を定義することでのメリットがあまりないわりに
定義のステートメントが多少ごたごたする。シンプルイズベスト。
794:132人目の素数さん
17/12/14 10:17:56.45 0QbMdCtb.net
自殺したい。
無になってもう二度と有になりたくない。
自殺をしたらをそれを実現できるかな?
795:132人目の素数さん
17/12/14 10:59:02.05 GoZ8B46N.net
実数からなるどのようなn次の正方行列Aに対しても、あるn次元ベクトルvが存在して、v=Avとできますか?
記述が不正確かもしれませんが、不動点が必ず存在するかという疑問です。
Aが逆行列を持つか持たないかにも関係はあるのでしょうか。
796:132人目の素数さん
17/12/14 11:04:56.62 qHwg9dPK.net
おおみえりこ(笑)
797:132人目の素数さん
17/12/14 11:32:26.36 v875YJTD.net
後出しくるぞ
798:132人目の素数さん
17/12/14 11:40:27.30 L6CFpqwD.net
(A-E(n))V==0 のVだね
=>
|A-E(n)|=0 for V != 0
799:132人目の素数さん
17/12/14 11:42:16.80 GoZ8B46N.net
>>772
ありがとうございます。単に引けばよかったんですね
800:132人目の素数さん
17/12/14 11:56:04.55 0QbMdCtb.net
無になりたい。
801:132人目の素数さん
17/12/14 12:03:51.26 0QbMdCtb.net
無になりたい。
802:132人目の素数さん
17/12/14 12:06:38.60 KhKK9beA.net
あんた無になる方法分かってるくせに自分からやらないのな
803:132人目の素数さん
17/12/14 12:17:27.42 0QbMdCtb.net
自殺をしたら無になれるのかな?
自殺は大罪だから自殺をしたら地�
804:魔ノ落ちるのかな? 死んだらどうなるんだろう? 死に方に関わらず無になるのかな? でも、今が「有」ってことは、死んでも無にはなれない気がする・・・・・。 どうすれば無になってもう二度と有にならなくて済むのだろう・・・?
805:132人目の素数さん
17/12/14 13:19:01.27 O7NnYAo2.net
そんなことして楽しい?
806:132人目の素数さん
17/12/14 13:41:56.05 1n0Cg77d.net
無になりたい。そしてもう二度と有になりたくない。
807:132人目の素数さん
17/12/14 13:50:26.33 5a9gEnrX.net
無になることはできません、残念ながら
808:132人目の素数さん
17/12/14 14:05:52.91 1n0Cg77d.net
理由を教えてください。
809:132人目の素数さん
17/12/14 14:16:20.95 5a9gEnrX.net
魂は不滅です
810:132人目の素数さん
17/12/14 14:24:02.28 GoZ8B46N.net
f(p)が素数になるような素数pが(n+1)個以上あるようなn次関数全体の集合をSnとする。
Snは有限集合か無限集合か。
811:132人目の素数さん
17/12/14 15:02:03.47 SmK0uiXp.net
>>777
本気なら
MIB(メンインブラック)ていう映画が参考になる
まずはお前がいたあらゆる証拠を消し、消した事実も発覚できないようにする
この時点で人間社会に対して「無」になる
この程度で満足するかどうかで次の行動が決まる
812:132人目の素数さん
17/12/14 16:17:37.15 VQxn6qZC.net
Q(ζ_m)がQ(ζ_n)を含むことと、
mがnの倍数になることは同値ですか?
813:132人目の素数さん
17/12/14 16:46:10.31 dEB57HRf.net
高校生です
3+i2 と 4-i3 の相関を求めたいです
内積は実部と虚部それぞれで考えるのですか?
814:132人目の素数さん
17/12/14 16:52:10.37 1USsaXZB.net
>>758
自己解決
815:132人目の素数さん
17/12/14 17:11:12.94 t9T3shyE.net
ふと思ったんだけど
「有理数」「無理数」の定義の中に「実数」っていう言葉が入ってて、
「実数」の定義の中にも、「有理数」「無理数」という言葉が入ってても大丈夫なの?
実数の1の定義を元に有理数と無理数の定義は成り立ってて
2はその有理数と無理数の定義から付随して成り立ってるだけで実質的な意味はないってこと?
要は2の定義だけなら循環論法だけど、1の定義で実数を定義できているので問題ない、ってこと?
816:132人目の素数さん
17/12/14 17:35:25.66 EF1+cw0e.net
有理数の定義に実数ってあるんだっけ
817:132人目の素数さん
17/12/14 17:39:17.69 NT94V441.net
>>788
大丈夫じゃないと思うけど
1とか2とか何について言ってるか示さないとどこが問題か言えない
818:132人目の素数さん
17/12/14 18:06:39.94 t9T3shyE.net
あごめん
1.(推定によるのでなく)実際にあると確かめた数量。
2.有理数・無理数の総称。
ちなみにグーグルに検索かけた定義ね
819:132人目の素数さん
17/12/14 18:37:19.30 xl6QbgRT.net
実数は有理数全体を完備化することで定義できるから無理数は{実数}\{有理数}でいいってところかな
820:132人目の素数さん
17/12/14 18:38:04.10 AJaRnRjH.net
日本語辞典(?)に数学的厳密性を求めちゃう人って……
821:132人目の素数さん
17/12/14 19:11:12.01 dZ+t3dKc.net
実数のうち、無理数でないものが、有理数。
822:132人目の素数さん
17/12/14 19:15:00.86 dZ+t3dKc.net
>>786
余弦定理を使う
823:132人目の素数さん
17/12/14 19:22:53.90 NT94V441.net
概念としては
整数同士の商として有理数か定義できて
有理数を完備化したのが実数で
実数のうち有理数でないものを無理数と呼ぶ
って順番じゃないのかな
824:132人目の素数さん
17/12/14 19:25:00.99 dZ+t3dKc.net
無限小数で表される数が、実数。その中で、循環小数とならないのが、無理数。それ以外が有理数。がっこではそう教わったけど
825:132人目の素数さん
17/12/14 19:30:38.19 NT94V441.net
>>797
そういう教わりかたでも間違ってないんじゃない?
「その中で」っていうけど、実数に有理数が含まれてると言ってるだけで、その言い方だと実数の定義から有理数を定義した訳じゃないから
826:132人目の素数さん
17/12/14 19:35:07.67 BG0HQM59.net
・長寿ランキング of 他分野
入江
827:一子(1916/05/15~)洋画家 101 イヴリー・ギトリス(1922/08/25~)ヴァイオリン奏者 95
828:132人目の素数さん
17/12/14 20:22:10.04 2GBA8BOu.net
Q(ζ_m)がQ(ζ_n)を含むことと、
mがnの倍数になることって同値?
829:132人目の素数さん
17/12/14 21:15:35.09 t9T3shyE.net
>>792
完備化とは?
830:132人目の素数さん
17/12/14 21:22:49.45 reJcl/Ml.net
>>801
コーシー列が収束するということです
831:132人目の素数さん
17/12/14 21:33:12.90 t9T3shyE.net
>>802
あぁ、習ったのにすっかり忘れてました..。
無知で申し訳ないのですが、
実数を有理数全体を完備化するっていうことと有理数の稠密性って関係ありますか??
832:132人目の素数さん
17/12/14 22:07:57.91 6HURdGoI.net
>>803
めっちゃ関係ある
完備化する前の集合は完備化した後の集合において、稠密部分集合となるから
833:132人目の素数さん
17/12/14 23:06:43.67 cunqYw0s.net
偏微分の極値について質問です。
与えられた条件のもとでf(x.y)の極値を求める問題です
(1)f(x.y)=xy g(x.y)= x^2+y^2-1=0
(2)f(x.y)=x^3+y^3 g(x.y)= x^2+y^2-1=0
答えは
(1)+-(1/√2,1/√2)で極大値1/2
+-(1/√2,-1/√2)で極小値-1/2
(2)(1,0) (0,1)で極大値1 (-1,0) (0, -1)で極小値-1
(1/√2,1/√2)で極小値1/√2
(-1/√2,-1/√2)で極大値-1/√2
極小、極大値の判定がよく分からないので、そこを詳しく説明してくださると助かります。
834:132人目の素数さん
17/12/14 23:25:12.29 G4mmNJXw.net
幾何学で第二基本形式Ⅱ=0⇒L,M,N=0ですか?
835:132人目の素数さん
17/12/15 01:10:36.68 u6+J0HW2.net
N^2の任意の元(n,m),(n',m')に対して演算*を
(n,m)*(n',m')⇔(m<m')または(m=m'かつn=n')
と定めたとき順序集合(N^2,*)は整列集合ということを示して下さい
836:132人目の素数さん
17/12/15 03:01:03.49 QaSRqpdT.net
xy平面上の曲線(直線)をxとyの式で表すよりも、複素平面上で複素数zとwの式で表した方が良い場合ってありますか?
良い場合というのは、例えば式が簡潔になるとか、工学での実用上計算がしやすくなるとか、図形の性質が解りやすくなるとか、です
837:132人目の素数さん
17/12/15 03:05:28.00 Iyf4ElEy.net
ない。
838:132人目の素数さん
17/12/15 04:26:41.24 zOGnMQ1E.net
要は基底を変換しただけでしょ
839:132人目の素数さん
17/12/15 05:14:52.92 VSTtLiB5.net
高校生です
3+i2 と 4-i3 の相関を求めたいです
複素数同士の相関がよくわかりません
840:132人目の素数さん
17/12/15 08:13:48.82 FGBge3KV.net
相関ってなんだかわかってんのか
841:132人目の素数さん
17/12/15 11:19:20.16 /fSk4cIi.net
角度だろ
相関角とかどっかで見たんじゃね?
842:132人目の素数さん
17/12/15 11:32:27.43 UctZOZ99.net
相関角って何だっけ
角度にしても高校の問題じゃなさそうだし
843:132人目の素数さん
17/12/15 11:44:47.58 m0lzWwyy.net
複素数をベクトル表記にして解くのかなと
844:132人目の素数さん
17/12/15 12:10:19.88 m0lzWwyy.net
相関角に当たるんだと思います
その場合、分母にそれぞれの自己相関を求めて分子は相互相関になるんですかね?
その時の共役の取り方など教えていただきたいです
845:132人目の素数さん
17/12/15 12:17:17.11 0UOvnIZK.net
なんかググってもよくわからないですねー
少なくとも数学の問題ではないようですから、適切な板で聞くか、数学の言葉に訳して質問し直してくださいね
今のままでは質問の意味が理解できません
846:132人目の素数さん
17/12/15 12:50:13.90 3wSnJrQS.net
もう面倒だから普通になす角の余弦だけとってろよ
847:132人目の素数さん
17/12/15 13:09:42.45 FGBge3KV.net
相関角とか聞いたことないわ。偏角じゃなくて?
もう少し教科書読んで共通言語学んできて�
848:ュれない
849:132人目の素数さん
17/12/15 13:22:21.23 UctZOZ99.net
>>818
こうか
複素数 z,w について、原点でなす角∠zOwをθとするとき
cosθ=〈z,w〉/(∥z∥∥w∥) =(zw~+wz~)/(2√(zz~・ww~))
850:132人目の素数さん
17/12/15 13:25:37.70 rXUGqmDv.net
東京大学理学部数学科に入って思う存分数学を勉強したいという気もする・・・・・。
でも、どーせ俺なんかの頭じゃ到底無理だろうから、やっぱり自殺した方が良いのかな?
851:132人目の素数さん
17/12/15 13:52:44.54 rXUGqmDv.net
東京大学理学部数学科で断然トップの人と慶應義塾大学医学部医学科で断然トップの人はどっちの方が頭が良いのでしょうか?
852:132人目の素数さん
17/12/15 14:13:05.22 G5v7erv5.net
此の教材の⑵からについてですが
此れ、無限和を許しているから線型独立性は無限和でやらなきゃいけないのでしょうか
正直線型空間習いたてで無限和を許容するのは正気の沙汰とは思えない訳だけど有限和にするには条件が足りない気がします
853:132人目の素数さん
17/12/15 14:13:42.71 G5v7erv5.net
>>823
画像貼り忘れました
URLリンク(i.imgur.com)
854:132人目の素数さん
17/12/15 14:34:18.30 VSTtLiB5.net
いろいろとすみません
複素ベクトルの内積がゼロとなる2つの複素数を教えてください
855:132人目の素数さん
17/12/15 15:09:56.60 Iyf4ElEy.net
いや
856:132人目の素数さん
17/12/15 15:20:45.37 qUkeUkV5.net
>>825
マルチに答える義理はない
てか高校でそんなことやるのかよ
857:132人目の素数さん
17/12/15 16:14:58.23 Csr91lDX.net
{(x, y, z) | x, y, z は周囲の長さが 2*s であるような三角形の3辺}
この集合はどんな集合になりますか?
858:132人目の素数さん
17/12/15 16:25:59.41 VSTtLiB5.net
>>827
マルチ??
いや先生に言われて答えたいんです
859:132人目の素数さん
17/12/15 16:34:22.71 zmrYUCZb.net
>>829
0と1です
860:数3
17/12/15 16:45:07.96 uqXDpGhA.net
>>828
{s=a+b+c|
-4 a^2 - 8 a b - 4 b^2 - 8 a c - 8 b c - 4 c^2, -a b c)+
(a b + a c + b )s+
( -a - b - c)s^2+s^3 = 0}
861:132人目の素数さん
17/12/15 17:12:00.73 VSTtLiB5.net
>>830
複素数で何かありますか?
862:132人目の素数さん
17/12/15 17:16:25.66 UctZOZ99.net
>>832
センセからの課題なら自分で考えた方がいいのでは
というか内積の定義にあてはめたら簡単では?
863:132人目の素数さん
17/12/15 17:52:13.84 S7p1wcDw.net
>>832
高校数学の範囲外らしいね
”二つの複素ベクトルの内積が 0 になる場合、それらの複素ベクトルは直交する、と表現する。”下記
とあるけど、これは二つの複素ベクトル aとbとが、a≠0 & b≠0 の条件の場合だな
取りあえず以上
URLリンク(mathtrain.jp)
共役複素数の覚えておくべき性質 高校数学の美しい物語 2015/11/04
(抜粋)
ちなみに大学の数学では複素ベクトル空間の標準内積を定義するときに自然に共役複素数が登場します
(引用終わり)
URLリンク(eman-physics.net)
EMANの物理学・物理数学・内積空間
物理と数学とで少し流儀が違うので、ちょっと説明に困った。
(抜粋)
複素ベクトルの内積
ベクトルの成分が複素数で表されている場合には、(7) 式を使って内積を計算するのである。つまり、一方のベクトルの成分だけ複素共役を取ってから、通常の内積を行うように計算すれば良い。もちろん、長さ 1 で互いに直交している基底を採用しているという前提である。
二つの複素ベクトルの内積が 0 になる場合、それらの複素ベクトルは直交する、と表現する。複素数のベクトルを具体的にイメージするなんてことはほ�
864:レ不可能なんじゃないかと思うが、幾何学のイメージを借りてきたのである。こうして実数の場合にも複素数の場合にも「ベクトルの直交」というものを定義することが出来た。 (引用終わり) https://ja.wikipedia.org/wiki/%E5%86%85%E7%A9%8D 内積 (抜粋) 定義 複素数体 C 上のベクトル空間 V 上で定義された二変数の写像 ?,?: V × V → C が内積あるいはエルミート内積であるとは、(略) 注意 文献によっては、エルミート内積および半双線型形式は第二引数に関して線型、従って第一引数に関して共軛線型とするもの(特に物理学や行列環に関するもの)と、それとは逆に第一引数に関して線型、第二引数に関して共軛線型とするものがある。 前者の分野においては、上記の内積 ?x,y? を(量子力学におけるブラケット記法で)?y?|?x? と書いたり、(略) (引用終わり)
865:132人目の素数さん
17/12/15 18:13:53.93 IuA5e40o.net
答えないとか自分で考えろとか言う奴は結局のところ何もわかってなさそうだから放っておいて、
複素数を実二次元ベクトルとして捉えた場合、z_1=a+biに対してz_2=-b+ai, z_3=b-aiとの内積が0となると思うんだが
複素ベクトルでエルミート内積を考えるのなら単に直交する2つのベクトルとしか言えない
それから0と1も複素数
866:132人目の素数さん
17/12/15 18:41:33.41 UctZOZ99.net
>>835
わかってない、というのは正解だね
説明が不十分なんだから
ゆえに
複素数をその成分で構成される実ベクトルと見なせって人もいれば
複素数を成分にもつ複素ベクトルと解釈する人もいる
質問してる本人もどれが意図しているものかわかってないんだから答えもあやふやにならざるを得ない
867:132人目の素数さん
17/12/15 20:25:32.39 m0lzWwyy.net
複素数なら内積をそれぞれのノルムで割れば相関となるのかなと思いまして
このような質問させていただきました
868:132人目の素数さん
17/12/15 21:38:00.56 Csr91lDX.net
URLリンク(page.auctions.yahoo.co.jp)
「杉浦三夫」って誰ですか?
869:132人目の素数さん
17/12/15 21:43:11.23 5JB39BOE.net
漢字の苦手な鮮人転売乞食ですね
870:132人目の素数さん
17/12/16 01:47:51.17 vvWR9qGT.net
>>837
いや、だからね、
内積、という概念は分野によって指すものが異なるから、定義を示すなり、どの分野を対象にしてるか書かなければ話にならないのではと。
ノルムも然り。
相関に至っては何に着目した相関かも明らかでない。
そんなこんなで結果、ご質問の焦点はいまだぼやけたままなのですが。
871:132人目の素数さん
17/12/16 05:37:32.57 2o2egwT4.net
望月新一氏とロスチャイルド家の当主はどっちの方が凄いですか?
872:132人目の素数さん
17/12/16 09:48:53.80 OXjHXy8L.net
ABC予想って何ですか?
873:132人目の素数さん
17/12/16 09:51:48.45 OXjHXy8L.net
今回掲載される論文に誤りがある確率はどれくらいでしょうか?
874:132人目の素数さん
17/12/16 10:10:24.57 OXjHXy8L.net
数学の論文って平均何ページくらいなんですか?
875:132人目の素数さん
17/12/16 10:32:22.45 gVZw/sJz.net
500ページ読むヴァカがおるの?
876:132人目の素数さん
17/12/16 12:16:03.51 0QZd/b9d.net
ニワカが湧いている
877:132人目の素数さん
17/12/16 12:34:56.14 gYxds7wh.net
望月新一氏と仏はどっちの方が凄いですか?
878:132人目の素数さん
17/12/16 12:38:15.36 jAZr2gc4.net
そんなことして楽しい?
879:132人目の素数さん
17/12/16 12:51:36.75 gBDkCXst.net
査読に5年かかったとどっかに書いてあったが、
多分査読者が見つからずに時がたっただけだろう
880:132人目の素数さん
17/12/16 23:13:45.36 YLFrUwwC.net
数論してる人に聞きたいのですが、代数的整数論よろしく位相的整数論とかないんですかね?
Zに位相入れてT_0空間には出来るので、そこから何かいい感じの定理とか性質引き出せないものなのでしょうか…?
流石にT_2位まではないとお話にならない…?
位相群だとT_0とT_2が同値になるとどこかで耳にしましたが
881:132人目の素数さん
17/12/16 23:36:33.58 rfvvDQnN.net
しっかし誰も解けない難しい質問ばっかでつまんねえなぁ。
本当に「実際は解いている連中ばっか」状態になったこと一度もねえじゃんw
もっと簡単な質問してこい、脳みそウンコまみれの底辺層ども。
882:132人目の素数さん
17/12/17 01:00:37.58 HnfMQIkp.net
ふつうに代数群でいいじゃん
883:132人目の素数さん
17/12/17 01:01:07.05 rRk/M3Id.net
・長寿ランキング of 他分野
97歳 佐伯敏子(1919/12/24~2017/10/03)広島市原爆供養塔 守人
賀川 浩(1924/12/29~) 92 サッカー記者
884:132人目の素数さん
17/12/17 10:13:02.28 Xrb0X2hd.net
2変数の陰関数の定理の証明について質問です。
--------------------------------------------------------------------------------------
fy(a, b) > 0 と仮定する。仮定により fy は連続であるから、適当に ρ > 0 をとれば、
|x - a| ≦ ρ をとれば、 |x - a| ≦ ρ, |y - b| ≦ ρ において fy(x, y) > 0
が成り立つ。
f(a, b) = 0 で、 f(a, y) は b - ρ ≦ y ≦ b + ρ において狭義単調増加であるから、
f(a, b - ρ) < 0, f(a, b + ρ) > 0
である。 f の連続性により、ここでさらに(必要があれば ρ をさらに小さい ρ で
おきかえることにより)、 I = (a - ρ, a + ρ) とおくとき、区間 I に属する任意の x に対して
f(x, b - ρ) < 0, f(x, b + ρ) > 0
が成り立つと仮定することができる。
--------------------------------------------------------------------------------------
「f の連続性により、ここでさらに(必要があれば ρ をさらに小さい ρ で
おきかえることにより)、 I = (a - ρ, a + ρ) とおくとき、区間 I に属する任意の x に対して
f(x, b - ρ) < 0, f(x, b + ρ) > 0
が成り立つと仮定することができる。」
と書いてありますが、これはなぜでしょうか?
ρ' を十分小さくとってやれば、 f の (a, b - ρ) での連続性により
I = (a - ρ', a + ρ') ∋ x に対して、
f(x, b - ρ) < 0
になるというのは分かります。
ですが、
ρ を十分小さくとってやれば、 f の連続性により
I = (a - ρ, a + ρ) ∋ x に対して、
f(x, b - ρ) < 0
になるというのが分かりません。
なぜでしょうか?
885:132人目の素数さん
17/12/17 11:08:51.23 Xrb0X2hd.net
>>854
他の本でも同様の証明が書いてあります。
886:132人目の素数さん
17/12/17 11:10:54.58 uReQjjB1.net
>>854
>>854
>ρ' を十分小さくとってやれば、 f の (a, b - ρ) での連続性により
>
>I = (a - ρ', a + ρ') ∋ x に対して、
>
>f(x, b - ρ) < 0
>ρ を十分小さくとってやれば、 f の連続性により
>
>I = (a - ρ, a + ρ) ∋ x に対して、
>
>f(x, b - ρ) < 0
何が違うの?
887:132人目の素数さん
17/12/17 11:15:50.04 Xrb0X2hd.net
ρ と ρ' の違いです。
888:132人目の素数さん
17/12/17 11:23:06.30 uReQjjB1.net
>>854
>f の連続性により、ここでさらに(必要があれば ρ をさらに小さい ρ でおきかえることにより)
これだな
889:132人目の素数さん
17/12/17 11:50:24.00 Xrb0X2hd.net
>>854
の証明は松坂和夫著『解析入門3』に載っているものです。
このあたりは他の本を参考にせずに書いたようですね。
そのせいか、おかしなところが多いです。
たとえば、陰関数の存在の一意性を証明していません。
890:132人目の素数さん
17/12/17 12:08:59.93 Xrb0X2hd.net
>>854
なぜ正方形領域にこだわっているのでしょうか?
意味のないこだわりに見えます。
891:132人目の素数さん
17/12/17 12:47:07.30 gZN3g0TO.net
問題
任意のε > 0に対して,あるRの開集合Aが存在し,AはRで稠密かつ|A|<εを満たす.これを証明せよ.
ただし,Rは実数全体の集合に絶対値によって距離が導入された位相空間とし,|A|は集合Aのルベーグ測度を表すものとする.
この問題なんですが,
全単射f: N → Qを1つとって,
I_k = (f(k) - ε/2^(k+1), f(k) + ε/2^(k+1)),
A = ∪[k ≧ 1] I_k
とおけば,Q⊆A⊆Rで,QはRで稠密だからAも稠密.
Aは開区間の和集合なので開集合.
しかも
|A|
= |∪[k≧1] I_k|
≦ Σ[k ≧ 1] |I_k| ←ここ
= Σ[k ≧ 1] ε/2^k
= (ε/2)/(1 - 1/2)
= ε
である. 完了
としたんですが,上の「←ここ」の不等
892:式を「ちゃんと証明して下さい」と言われました. 「ちゃんと証明」するにはどうしたらいいか教えて下さい. N, Q, Rは自然数(0は除く)全体,有理数全体,実数全体です.
893:861
17/12/17 12:49:39.05 gZN3g0TO.net
すみません.間違えました.
「←ここ」の不等号は「≦」でなく「<」です
894:132人目の素数さん
17/12/17 12:57:02.93 3fYgt7+i.net
測度の定義を思い出せ
そのまんまの不等式があるやろ
895:132人目の素数さん
17/12/17 13:06:50.13 oU0A4uvX.net
>>861
= |∪[k≧1] I_k|
=Σ[k ≧ 1] |I_k|
だから成り立つ
896:132人目の素数さん
17/12/17 16:14:48.60 gZN3g0TO.net
そのまんま??
なんでしたっけ?
897:132人目の素数さん
17/12/17 17:02:17.06 LRhtLRAy.net
The dirver who drove yakuza autotrack was too foolish not to be able to slow down on the narrow bridge.
898:132人目の素数さん
17/12/17 17:42:01.27 2eAUHz9f.net
abc予想に関する傑作問題です
自然数a,b,cからどのように2つを選んで相加平均をとっても、それは残りの1つの自然数より大きくないという。
a,b,cが満たす関係式を求めよ。
899:132人目の素数さん
17/12/17 20:56:18.92 MW4shBkj.net
質問スレなんで自分でわかってる問題を出すのはね…
900:132人目の素数さん
17/12/17 21:01:02.86 HAu7B79c.net
ここは質問スレじゃないよ
901:132人目の素数さん
17/12/17 21:28:07.12 jEEM4c9d.net
ここは分からない問題を書くスレですからね(笑)
902:132人目の素数さん
17/12/17 21:53:50.12 2f2D6fwD.net
質問なのですが鉛筆で波線を引いたところの式はどこに由来するのでしょうか。
数列a_nの式を両辺-3をする、という解法だから暗記しろということなのですか?
URLリンク(i.imgur.com)
903:132人目の素数さん
17/12/17 22:08:14.33 4B3QFUuN.net
>>871
bn は、an-3の逆数だから、とりあえずan-3を求めてから計算すれば楽だろうってこと。
なぜ -3 をすればいいのかということは、今理解する必要はない。
受験で言うなら、その右側の特性方程式なるものは覚える必要はなくって、
必ずbn=1/(an-3)とか、bn = (an-2)/(an-3) とおく。のような誘導がついてくるから
その誘導に素直に従えばいいよ。
904:132人目の素数さん
17/12/17 22:24:49.39 2f2D6fwD.net
ではきちんと(今の段階で理解できないような)論理的背景があるのですね?
わからないかもしれませんが説明してくれませんか?
905:132人目の素数さん
17/12/17 22:44:25.73 fz0bADR8.net
>>842
府中競馬場でおっちゃんがやってるやつ。
906:132人目の素数さん
17/12/17 22:45:19.26 4B3QFUuN.net
1次分数変換で調べるか、行列と1次変換を経由して固有値を求めて計算。
自分で適当な分数型の漸化式を作って、特性方程式を使った解を使えば
この方法で答えが求まることはわかるだろう。
本気で知りたいなら高円寺にでも行ってくれ。
907:132人目の素数さん
17/12/17 23:33:45.59 z34f7fJr.net
この問題わかる方いたら教えて下さい
URLリンク(i.imgur.com)
908:132人目の素数さん
17/12/18 00:20:15.47 8qDJimuU.net
(1)通分して整数にならないといけないからaは偶数
a=2mとおいて約分すればmも偶数であることがでる
(2)代入してcが奇数まではわかった、そこで詰んだ
ということがわかった
909:132人目の素数さん
17/12/18 00:33:47.34 JkKj9zWn.net
URLリンク(i.imgur.com)
910:132人目の素数さん
17/12/18 02:26:14.19 JkKj9zWn.net
>>877
つんでないよ
同じ論法で
a=4c -> n=(b+b^2 c+8c^2)/(2 b c)---> b= kc-->n=(8c^2+c+c^3k^2)/(2 c^2 k)
-->c= k d -->n=(1+8d +d^2 k^3)/(2 d k)--->d=1--> n=(9+k^3)/(2 k)
---> k| 9--> k=1,3,9 ----->n= 5,6,41
でつんだ。
わたしは楕円関数まで迷っていましたが、貴君の解答で正道に戻ったのであります。
><;;
911:132人目の素数さん
17/12/18 09:42:32.50 FMw7Fw6g.net
アレクサンドリアのディオファントスさんってどのくらいのレベルの数学者ですか?
東大理Ⅲの中でダントツの人が猛烈に努力すればこの人を超えられるのでしょうか?
それとも、それは到底不可能な話ですか?
912:132人目の素数さん
17/12/18 09:49:06.68 PlmFzoo+.net
哀れなレス乞食、ヒマラヤ
913:132人目の素数さん
17/12/18 10:52:54.50 SFQsSxH8.net
>>876
a=4cとすると、n=1/(2c) + 4c/b + b/2
2n-b = 1/c + 8c/b
b(2n-b) = 8c + (b/c)
左辺は整数なので、b/cも整数。 b/c=λ とおくと、
(bが奇数なので、cもλも奇数であることに注意)
λ(2n-λc) = 8 + (λ/c)
λ/cも整数。λ/c=kとおくと、(λ,cが奇数なので、kも奇数)
c(2n-kc^2) = 1 + 8/k
左辺は整数なので、8/kも整数だが、これが整数となる奇数のkは1のみで、b=c^2を得る。以下略
914:132人目の素数さん
17/12/18 12:38:02.24 UaNVcPKU.net
g(x_1, …, x_(n-1)) を (n-1) 変数の連続関数とする。
R^(n-1) から R^n への以下の写像は連続写像であることを証明せよ。
(x_1, …, x_(n-1)) → (x_1, …, x_(n-1), g(x_1, …, x_(n-1)))
915:132人目の素数さん
17/12/18 12:57:58.73 UaNVcPKU.net
ε を任意の正の実数とする。
g(x_1, …, x_(n-1)) は連続関数だから、
sqrt( (x_1 - a_1)^2 + … + (x_(n-1) - a_(n-1))^2 ) < δ
⇒
|g(x_1, …, x_(n-1)) - g(a_1, …, a_(n-1))| < ε/n
を満たす正の実数 δ が存在する。
|x_1 - a_1| < δ/(n-1)
|x_2 - a_2| < δ/(n-1)
…
|x_(n-1) - a_(n-1)| < δ/(n-1)
ならば、
sqrt( (x_1 - a_1)^2 + … + (x_(n-1) - a_(n-1))^2 ) ≦ |x_1 - a_1| + |x_2 - a_2| + … + |x_(n-1) - a_(n-1)| = (n-1)*δ/(n-1) = δ
だから、
|g(x_1, …, x_(n-1)) - g(a_1, …, a_(n-1))| < ε/n
が成り立つ。
δ_1 := min(δ/(n-1), ε/n)
とおく。
sqrt( (x_1 - a_1)^2 + … + (x_(n-1) - a_(n-1))^2 ) < δ_1
ならば、
|x_i - a_i| ≦ sqrt( (x_1 - a_1)^2 + … + (x_(n-1) - a_(n-1))^2 ) < δ_1 ≦ δ/(n-1)
だから
|g(x_1, …, x_(n-1)) - g(a_1, …, a_(n-1))| < ε/n
が成り立つ。
また、
|x_i - a_i| ≦ sqrt( (x_1 - a_1)^2 + … + (x_(n-1) - a_(n-1))^2 ) < δ_1 ≦ ε/n
である。
916:132人目の素数さん
17/12/18 12:58:26.76 UaNVcPKU.net
よって、
sqrt( (x_1 - a_1)^2 + … + (x_(n-1) - a_(n-1))^2 + (g(x_1, …, x_(n-1)) - g(x_1, …, x_(n-1)))^2 )
≦
|x_1 - a_1| + |x_2 - a_2| + … + |x_(n-1) - a_(n-1)| + |g(x_1, …, x_(n-1)) - g(x_1, …, x_(n-1))|
≦
(ε/n)*(n-1) + ε/n
=
ε
が成り立つ。
これは、
(x_1, …, x_(n-1)) → (x_1, …, x_(n-1), g(x_1, …, x_(n-1)))
が連続写像であることを示す。
917:132人目の素数さん
17/12/18 14:08:00.76 UaNVcPKU.net
杉浦光夫著『解析入門2』の陰関数定理のステートメントに
一意的に存在すると書かれていないのはなぜでしょうか?
918:132人目の素数さん
17/12/18 14:21:55.09 hmtGRwHq.net
当たり前だからです
919:132人目の素数さん
17/12/18 14:28:30.91 UaNVcPKU.net
杉浦光夫さんはむしろ当たり前のことでもきちんと書くような人ではないでしょうか?
920:132人目の素数さん
17/12/18 15:20:26.98 ItweH3de.net
AB=5 BC=7 cosB=3/5である△ABCがある。
直線ACに対して点Bと反対側に、点PをAP=ACとなるようにとる。
△APCの面積が△OABの面積の8/5倍となるとき、tan∠PACの値を求めよ。
よろしくお願いします。
921:132人目の素数さん
17/12/18 15:57:56.13 RirD0PmU.net
質問失礼します。
放物線f(x)=ax^2+bx+cにおいて、放物線上の任意の2点P,Qがあるとする。
このP,Qを結んだ直線と、放物線の距離が最大となるときの、距離を求める。
P,Qを結んだ直線の傾きが(Qx-Qy)/(Px-Py)なので、この直線の式を立てて、直線と放物線の距離を作り・・・と考えたのですが、複雑すぎて追いつかなくなりました。
何かスマートな方法はあるでしょうか?
922:132人目の素数さん
17/12/18 16:00:17.34 XsBkl2Xb.net
ここはポエム校正スレじゃないよ
923:132人目の素数さん
17/12/18 17:17:00.94 JkKj9zWn.net
>>882
つんだーー行き詰まった >>876
つんだーー解決した(将棋チェス) >>879
両方の解釈がある
924:132人目の素数さん
17/12/18 21:52:57.71 SFQsSxH8.net
>>892
「つんだ」に、本来「解決した」という意味はありません。
行き詰まった、手出しが出来ない という意味で、将棋やチェスで「詰む」
というのは後手玉(詰まされる側の玉)の立場の心情や状況を表したものです。
それが、局面を表す言葉として「も」使われているだけです。
「詰みの状態」、「詰んだ局面」→「勝負がついた」→「解決(?)した」
というロジックだと思いますが、「相手を詰んだ状態に追い込んで解決した」
ということでしかありません。
それ故、囲碁で勝負がつくことを「詰んだ」とはいいません。
(部分的な石の死が決まる時には使うことがあるかもしれません。)
925:132人目の素数さん
17/12/18 22:02:50.08 GtvOXPBa.net
今日の補習の問題でした。多分、有名大学のどれかの過去問だと思うのですが、どなたかわかりませんか?もし、有名大学ではなかったらすみません。
また、解の配置以外の解き方はありますか?
URLリンク(i.imgur.com)
926:132人目の素数さん
17/12/18 22:40:00.72 EGc+331+.net
自明
927:132人目の素数さん
17/12/18 22:52:03.45 /TZL+GJZ.net
>>894
東大理系96年
ただシンプルに計算していくのが一番ラク
行列との関連とか考えだすと実は難しくなるという嫌な問題(by大学への数学)