分からない問題はここに書いてね438at MATH
分からない問題はここに書いてね438 - 暇つぶし2ch1027:132人目の素数さん
17/12/22 11:41:48.37 W6/MI30F.net
f(x, y) = x^2 * exp(-x^4-y^2)
sqrt(x^2 + y^2) → ∞ のとき、
f(x, y) → 0
を示せ。
この問題に対するラングの解答は以下です。
「諸君はすでに“解析入門”において
lim x^2 * exp(-x) = 0
であることを学んでいる。 x が十分大きければ x^4 は x より大きく、
したがって exp(-x^4) は exp(-x) より小さい。よって
x が大きくなるとき x^2 * exp(-x^4) → 0
である。また y^2 ≧ 0 であるから exp(-y^2) ≦ 1。
ゆえに
r = sqrt(x^2 + y^2)
が大きくなるとき、関数 f(x, y) は 0 に近づく。

1028:132人目の素数さん
17/12/22 11:42:03.42 W6/MI30F.net
これってひどすぎないですか?

1029:132人目の素数さん
17/12/22 11:48:07.16 L+4ikRzW.net
どの辺りが?

1030:132人目の素数さん
17/12/22 12:22:34.12 W6/MI30F.net
>>993
↓こんな感じで書くべきだと思います。
ε を任意の正の実数とする。
f(x, y) ≦ x^2 * exp(-x^4)
x^2 * exp(-x^4) → 0 (x → ±∞) だから、
∃Kx > 0 such that |x| > Kx ⇒ x^2 * exp(-x^4) < ε
よって、
∃Kx > 0 such that |x| > Kx ⇒ f(x, y) < ε
つぎに、
-Kx ≦ x ≦ Kx とする。
0 ≦ x^2 ≦ max{1, Kx^2}
0 ≦ exp(-x^4) ≦ 1
だから
f(x, y) ≦ max{1, Kx^2} * exp(-y^2)
exp(-y^2) → 0 (y → ±∞) だから、
∃Ky > 0 such that |y| > Ky ⇒ max{1, Kx^2} * exp(-y^2) < ε
よって、
-Kx ≦ x ≦ Kx のとき、
∃Ky > 0 such that |y| > Ky ⇒ f(x, y) < ε
以上より、
sqrt(x^2 + y^2) > sqrt(Kx^2 + Ky^2)

f(x, y) < ε

1031:132人目の素数さん
17/12/22 12:42:11.37 EiAOfpfW.net
無駄に行を開ける奴

1032:132人目の素数さん
17/12/22 12:53:46.35 L+4ikRzW.net
>>994
ほうほう。で、何が問題だったの?
まさか、いかに入門書であっても必ずεを使って書くべき、とか言わないよね?

1033:132人目の素数さん
17/12/22 13:01:55.68 W6/MI30F.net
>>996
ラングが言っているのは、 x の絶対値が十分大きければ
f(x, y) が 0 に近いということだけです。

1034:132人目の素数さん
17/12/22 13:39:42.79 L+4ikRzW.net
>>997
ありがとうございます。理解しました。
lim x^2 * exp(-x) = 0 から一足飛びに結論を導いたところに問題がある。と?
確かに sqrt(x^2 + y^2) → ∞ のとき、 x^2 * exp(-x) → 0 となるとは言えないですね。

1035:132人目の素数さん
17/12/22 13:44:38.35 kKzEQRRs.net
f(x, y) = x^2 * exp(-x^4-y^2)< (x^2 + y^2) * exp(-x^2-y^2 )
= r^2 * exp( -r^2 ) to 0

1036:132人目の素数さん
17/12/22 14:01:23.79 Q7HPh6Gr.net
何を逆立ちしているの?
f(x, y) = x^2 * exp(-x^4-y^2)<x^2 * exp(-x^2-y^2)<x^2 * exp(-x^2)->0
だけのことじゃん?

1037:1001
Over 1000 Thread.net
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 26日 17時間 22分 34秒

1038:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています


最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch