分からない問題はここに書いてね478at MATH
分からない問題はここに書いてね478 - 暇つぶし2ch703:132人目の素数さん
19/08/13 00:57:34.59 gccQR1zi.net
>>657
AD=BC=1 とすると
A (0, 0)
B (b, 0)
C (c, sin(B)) = (c, 0.9135454576426)
D (cos(A), sin(A)) = (-(√3)/2, 1/2)
ただし
 b = (1/2)√(5+2√5) + cos(A) = 0.672816364803
 c = b - cos(B) = 1.079553007879
これより
 tan(∠ABD) = sin(A)/{b-cos(A)} = 1/√(5+2√5) = tan(18゚)
∴ ∠ABD = 18゚     >>658

704:132人目の素数さん
19/08/14 10:24:37.98 /Fhar0Pm.net
f_i (i∈I)は有界な連続関数とする
この時、他にどんな条件を付加すれば、sup{ f_i(x) | i∈I } は連続関数になりますか?

705:132人目の素数さん
19/08/14 10:25:17.18 /Fhar0Pm.net
ただし、Iは一般に無限集合とします

706:132人目の素数さん
19/08/14 10:59:41.11 nsHYbjzT.net
>>676
そんなもん答えよう内だろ?
十分条件なら同程度連続とかあればいえるけど同程度連続でないけど主張が成立する例なんかいくらでも作れるし。
一般に
 ×××である必要十分条件
 
なんか大学以上の数学では答えようがない。

707:132人目の素数さん
19/08/14 12:28:25.63 6g/6nRC7.net
>>677
これは高校数学の美しい物語に書いてますね

708:132人目の素数さん
19/08/14 14:14:28.16 zBw6iupB.net
理科大っぽい問題

709:132人目の素数さん
19/08/14 14:14:49.42 wbaakgV1.net
宣伝かと思ったら、実は逆とか?

710:132人目の素数さん
19/08/14 19:35:19.79 /Fhar0Pm.net
>>678
では、
   求める条件は、
     ・各f_iの具体的な形には言及しない
     ・成り立つ条件の内出来るだけ緩い条件のもの
でお願いします

711:132人目の素数さん
19/08/14 20:04:20.88 HORh5Q


712:PT.net



713:132人目の素数さん
19/08/14 20:24:37.65 /Fhar0Pm.net
>>683
うん。お前に聞いても無駄だと言うことが分かった。
何故かって?
実はこの質問はある資料PDFで成り立つと主張されてる事実の行間を厳密に埋めるために俺が詳細を検討しようとしてこういう風に聞いたわけ
だから、答え(の一つ)である条件はあるわけで、俺はその条件がsup{f_i}の連続性を示すのにどういう風に効いてくるのかが気になったから聞いたわけ。
そういうわけで>>678でお前が「答えよう無い」って言ってる時点で、「あ、こいつアホだな」と感じたけど一応付き合ってただけ(後悔)。
まぁ数学において「答えようが無い」っていう否定的な主張を安易に断言してる時点でお前みたいな奴に数学についての知識を聞くこと自体が間違いと言っちゃあ間違いだよな。
あと、出来るだけ緩いってのは、>>678でお前自身が「いくらでも」って言ったから、お前が分かる範囲内での緩いって意味で言ったつもりなんだが、
ちょっとコミュニケーションが取れてなかったみたいだね。

714:132人目の素数さん
19/08/14 20:52:50.07 HORh5QPT.net
>>684
アホか?
だったらある資料でこんな主張があるのだけど
それ厳密に示せるかってきけばいいだけやろ?
脳みそお散歩中?

715:132人目の素数さん
19/08/14 23:00:26.41 dR/rZhi0.net
>>685
でも、高校数学の美しい物語をも含めたけどね?なんは多分、このために必要がある日に書いてますね?

716:132人目の素数さん
19/08/15 09:47:43.92 mb0kFBiv.net
行間を埋めようとして「俺が詳細を検討」じゃなくて、自分で行間を埋められなかったからここで聞いてみたら
まともに答えてもらえなくて逆切れしてるところなんだろ

717:132人目の素数さん
19/08/15 17:58:53.77 a3i3ESgW.net
>>676
sup{ f_i(x) | i∈I } が連続関数になるようなf_iを選びます
これは必要十分条件なので、最も緩い条件ですね

718:132人目の素数さん
19/08/19 11:10:24.43 POXH7p5a.net
ある円内に等方的に点を配置するためにベクトルで表現したいのですがどうしたら良いのでしょうか

719:132人目の素数さん
19/08/19 11:41:19.59 s+1O99WU.net
座標で表現した後、ベクトルを用いて書き直せば良いのではないでしょうか

720:132人目の素数さん
19/08/19 13:11:18.79 /SgfqcGC.net
「回転しても不変」をベクトルで書けばいいのさ

721:132人目の素数さん
19/08/20 18:19:55.43 l4SmAKRI.net
>>690
>>691
ありがとうございます

722:
19/08/21 00:03:11.33 t/TzLbiN.net
>>670
>>689円内に等方的に同じ大きさのベクトルを配置したらわ?
言ってる意味わかるんであればそうしたらいいと思うけど。

723:132人目の素数さん
19/08/28 03:58:56.47 6zgpWnWh.net
実数aについての条件
問題) ある正の数xに対して a+x>0
答え) 常に成り立つ
aの値が-xより小さければ成り立たないのに
答えは「常に成り立つ」ですけどどうしてでしょうか?

724:132人目の素数さん
19/08/28 07:22:42.44 IetccoAC.net
>>694
その問題文だと、ようは「a+x>0が成り立つ何らかの正の数xが存在する」という条件を言っている
だから任意の実数のaに対して成り立つだろ

725:132人目の素数さん
19/08/28 11:24:50.13 6zgpWnWh.net
>>695
何らかの正の数xが例えば1だとした場合、aが-2なら成り立たない
だから任意の実数のaに対して成り立つとはいえないのでは?

726:132人目の素数さん
19/08/28 11:36:32.83 6zgpWnWh.net



727:の問題と答えも載せると 実数aについての条件 問題) 任意の正の数xに対して a+x>0 答え) a≧0と同値である 問題) 任意の正の数xに対して a-x>0 答え) 決して成り立たない 問題) ある正の数xに対して a+x>0 答え) 常に成り立つ 問題) ある正の数xに対して a-x>0 答え) a>0と同値である



728:132人目の素数さん
19/08/28 11:42:22.69 mV8JwkiT.net
>>696
xのほうを変えればいいんだよ
どんな実数aでも適当なxを持ってくればa+x>0が成り立つだろう?
「実数aがいくつであっても、そのaに対してa+x>0を成り立たせるような正の数xが一つでも存在するか」ってことであって、
「全ての実数aに対してa+x>0を成り立たせるような正の数xが存在するか」ってことではない

729:132人目の素数さん
19/08/28 23:16:39.15 6zgpWnWh.net
>>698
> 問題) 任意の正の数xに対して a-x>0
> 答え) 決して成り立たない
逆にこの場合は全てのxに対して a-x>0 が成り立たないといけないってことで
反例があるから答えは「決して成り立たない」というのになるんでしょうか?

730:132人目の素数さん
19/08/29 06:57:12.95 KtQiuy8b.net
>>699
そうだよ
正確には「どのような実数aでも反例が存在するから」
「『任意の正の数xに対して a-x>0』が成り立つような実数aの条件を求めよ」っていう問題であり、そんなaは存在しない

731:132人目の素数さん
19/08/29 13:56:32.26 jqbtSd2r.net
>>696
なんでaより先にxを決めるんだ?
「任意のaに対して、a+x>0が成り立つような何らかの正の数xが存在する」だぞ
aが-2ならば、2より大きい正の数をxとすれば良いだけ
x=1だと確かにa+x>0にならないけど、x=3ならばa+x>0になるだろ。
つまり「x=3が存在する」と言えるから、条件は成り立ってる

732:132人目の素数さん
19/08/29 14:38:22.89 KtQiuy8b.net
“成り立つ”の主語が何なのか混同していたんじゃないかな
問題) 「ある正の数xに対して 『a+x>0』が成り立つ(※1)」が成り立つ(※2)実数aの条件を答えよ
※1の“成り立つ”の主語は『』、※2の“成り立つ”の主語は「」
問題で問われているのは※2が成り立つ実数aの条件
問題文が>>694の通りだとすると“成り立つ”という言葉はどちらも省略されてしまっているので補完するときに混乱したのか

733:132人目の素数さん
19/08/29 14:42:00.81 itNSthTn.net
>>694
問題文が悪いと思うわ
「任意のxに対して」なのか
「あるxが存在して」なのか分かりづらい

734:132人目の素数さん
19/08/29 16:45:01.31 jbDK1IHp.net
これ東大の問題
問題文が悪いと思うのはわかりにくくするためなんだと思う
理解力のあるやつはそれでもわかるという意図の元作られてるのかな

735:132人目の素数さん
19/08/29 17:12:57.98 itNSthTn.net
東大の問題っても多分昔の問題じゃない?
東大は物理とかもそうで
昔は力や電流の向きを指定しないとか
意地の悪い問題が多かった
最近は少ないんじゃないの?

736:132人目の素数さん
19/08/29 17:52:09.30 wCUh0GJm.net
【公開】YouTubeのチャンネル登録が10万人だと、月収は100万円です
URLリンク(www.youtube.com)
【YouTubeの収益】2ヶ月目!登録者6,000人の月収は!?
URLリンク(www.youtube.com)
【秘密公開】YouTuberになりたい人は必見!! 広告収入で実際どれくらい稼げるのか正直に話します
URLリンク(www.youtube.com)
シバターが2018年稼いだ金額をリアルに発表します
URLリンク(www.youtube.com)
ユーチューバーのランク(階級)と収入についてザクっと解説
URLリンク(www.youtube.com)
登録者15000人の収益公開します。【第一回質問コーナー】
URLリンク(www.youtube.com)
底辺YouTuberの収益公開!
URLリンク(www.youtube.com)

737:イナ
19/08/30 08:24:29.33 Vf6wl0ub.net
>>693
>>703
>>694に「ある」と書いてあります。
ある ←→任意の
∃x>0←→∀x>0
「ある」は「任意の」の対義語で、「任意の」は「すべての」の「同義語」です。

738:132人目の素数さん
19/10/03 20:42:41.00 lm+gy1b4.net
8桁の普通の電卓を使ってください。
11111111 のルートをとると 3333.3333 になります。
44444444 のルートだと 6666.6666 になります。
99999999 のルートで 9999.9999 になります。
うまく説明できないのですが、このような例はほかに
あるのでしょうか。いろいろやってみてるのですが、
あまりきれいな数字にはならないのです。

739:132人目の素数さん
19/10/03 21:07:42.28 oxo2VyZG.net
( ・∀・)< 45450721 → 6741
規則的に見えるのは
(3/9)^2=(1/9)
(6/9)^2=(4/9)
(9/9)^2=(9/9)
の関係があるからやね

740:132人目の素数さん
19/10/03 21:12:11.95 R7h4kvTK.net
全然関係ないけど好きなので貼っておく
ノブナンバーと言うらしい
3114^2 = 9696996
81619^2 = 6661661161

741:132人目の素数さん
19/10/03 21:22:12.95 2BFP9H7S.net
1234566789 => ?

742:132人目の素数さん
19/10/03 21:22:37.03 2BFP9H7S.net
123456789

743:132人目の素数さん
19/10/03 21:24:41.51 R7h4kvTK.net
>>710
なお、これらは偶然だと思う

744:132人目の素数さん
19/10/04 01:35:18.88 4NSdVRRf.net
循環小数を既約分数で表す問題
例えば0.3…の場合
0.3…=xとおいて
両辺に10をかけて
3+0.3…=10x 3+x=10x x=3/9=1/3
このような問題がよくありますよね、でも0.3…に10をかけて3+0.3…にするのって許されるのでしょうか。
無限に続くものに10をかけるって意味わかんなくないですか?
上記の式も10×0.3…とするべきだと思うんですけど、どう思われますか?

745:132人目の素数さん
19/10/04 02:14:29.84 fvULVCiA.net
>>714
その算法が上手くいくことの素直な証明は数学3で勉強する無限等比数列というテクニックを勉強するまでわかりません。
当面は無限巡回小数は有理数になり、それが何になるか感覚的に理解する方法と割り切っておきましょう。

746:132人目の素数さん
19/10/04 02:20:33.82 HbC40EgI.net
>>714
0.3.・・・ の ・・・ がどういう意味なのかをあきらかにすることから始まる。

747:132人目の素数さん
19/10/04 07:53:35.78 9N7Oyp2q.net
10/3=3.3…だろう?

748:132人目の素数さん
19/10/04 07:58:34.00 9N7Oyp2q.net
10πを小数で表したら31.4159265...ってしないのかな?
π=3.14として計算せよって問題のとき2π=6.28とするのも2*0.3…=0.6…も疑問なんだろうか

749:132人目の素数さん
19/10/04 08:31:36.81 mJ9DBnTz.net
>>714
無限遠でも一桁ずれるから、インチキっぽいよね。

750:132人目の素数さん
19/10/04 11:24:03.58 nbHc6C+U.net
「…」という記号の呼び名に定称がないのがよくない
「…」はxxでその定義は、性質は、というコラムが高校の教科書にあってよい

751:132人目の素数さん
19/10/04 18:35:54.58 qeBlIg9t.net
>>710
各桁が2種類のみの数字(≠0)で構成された平方数は
 4~9,11,12,15,21,22,26,38,88,109,173,212,235,264,3114,81619
以外にあるか?
芦ケ原伸之:『大人のパズル 「ひらめき」と「論理」を楽しもう』PHP研究所 (2003/July)
 p.239~240 
( //www,php,co,jp/books/


752:detail,php?isbn=4-569-62955-5 ) ( //japla,sakura,ne,jp/workshop/workshop/2009/morisawa_dec2009,pdf )



753:132人目の素数さん
19/10/05 00:12:18.05 ZD3Duxd6.net
>>720
>「…」という記号の呼び名
dotsと呼ばれる

754:132人目の素数さん
19/10/05 00:24:49.09 j+i/2SYO.net
まさに点点点だな

755:哀れな素人
19/10/05 08:33:48.94 rxpI427y.net
9は3で割り切れる。
だから9がどこまで続いても3で割り切れるのである。
だから0.99999……÷3=0.33333……である。
ところが1は3で割り切れない。必ず1余る。
だから1余ることを+αと書けば、
1÷3=0.33333……+αである。
だから
0.99999……<1
である。
こういう話に興味がある者は下記スレへ
0.99999……は1ではない
スレリンク(math板)

756:132人目の素数さん
19/10/05 13:40:24.62 B8lG0HHv.net
ほんと哀れやな

757:132人目の素数さん
19/10/06 19:12:23.85 QggsQo+2.net
安達さんの無限小数の概念のソースがようやく判明しました
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
729 名前:哀れな素人 :2019/10/05(土) 09:41:06.28 ID:rxpI427y
そんなことは書かれていない(笑
広辞苑 無限級数
項の数が限りなく多い級数
これ以上どんな説明が必要なのか(笑
極限などとは一言も書かれていない(笑
極限とか極限値というのは定数、固定数なのである(笑
無限級数とは絶えず増加する数なのに、何でそれが固定数なのか(笑
お前は自分で考えずに権威に頼るからアホなのである(笑
↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑

この広辞苑の一行説明が全てだそうです

758:132人目の素数さん
19/10/28 09:46:02.05 9poFh7Gs.net
四次方程式 x^4+ax^3=bを
ラグランジュの方法て解決 すれば xわ いくつ ですか (ラグランジュの方法て
詳わしく 説明して ください)

759:132人目の素数さん
19/10/28 23:05:46.05 M55VqgNP.net
(概説)
 x + a/4 = X
とおくと3次の項がなくなり、
 x^4 + ax^3 - b = X^4 - (3/8)(a^2)X^2 + (1/8)(a^3)X - (3/256)(a^4) - b,
これは
 {X^2 + (p-aa/16)}^2 - 2(p+aa/8)・{X - (a^3)/[32(p+aa/8)]}^2,     ・・・・ (*)
の形になる。(pは未定のパラメータ)
定数項を比べて
 (p-aa/16)^2 - (1/512)(a^6)/(p+aa/8) = - (3/256)a^4 - b,
 p^3 + b(p+aa/8) = 0,
この3次方程式を解いてパラメーター p を求め、
(*) を解いてXを求め、
x = X-a/4 を求める。

760:132人目の素数さん
19/10/29 07:35:36 wYFR2GdZ.net
 p^3 + bp +2A = 0,
を解くと
 p = {√(AA+(b/3)^3) - A}^(1/3) - {√(AA+(b/3)^3) + A}^(1/3),
ここに
 A = b(a/4)^2.

761:132人目の素数さん
19/10/29 18:30:37.16 wYFR2GdZ.net
直接
 x^4 + ax^3 - b = -2p(xx){1 - (a/4p)x}^2 - b{1 - (p/b)xx}^2
としてもよい。
x^4 の係数を比べて
 -aa/8p -pp/b = 1,

762:132人目の素数さん
19/10/30 03:30:30.79 BmR+wraF.net
>>728
直接
 x^4 +ax^3 -b = {xx +(a/2)x +p}^2 - 2(p+aa/8){x + ap/[4(p+aa/8)]}^2,
としても同じこと。
定数項を比べて
 pp - (ap)^2/(8p+aa) = -b,

763:132人目の素数さん
19/11/10 23:01:21.46 qadL19gv.net
自作問題です。
8つのサイコロを同時にふるとき、出る目の組が(a,a,a,b,b,c,c,d)のように出る確率を求めよ。
という問題なのですが、私が計算したら
175/2916 になったのですが、合ってるか自信がありません。添削して教えていただきたいです。

764:132人目の素数さん
19/11/11 07:52:26 vghClrvY.net



765:分の解法も書きなよ



766:132人目の素数さん
19/11/11 08:04:52.99 FRx+BjCW.net
C[6,4]8!/6^8

767:132人目の素数さん
19/11/12 00:03:52 60GMZ1mJ.net
サイコロに#1~#8の番号を振る。

aの出るサイコロの組合せ:C[8,3] = 56,
bの出るサイコロの組合せ:C[8-3,2] = C[5,2] = 10,
cの出るサイコロの組合せ:C[5-2,2] = C[3,2] = 3,
dの出るサイコロ: C[3-2,1] = C[1,1] = 1,
 56 * 10 * 3 * 1 = 1680,

aの選び方: C[6,1] = 6,
b>c の選び方: C[6-1,2] = C[5,2] = 10,
d の選び方: C[5-2,1] = C[3,1] = 3,
 a, b>c, d の選び方: 6 * 10 * 3 = 180 とおり。

∴ 1680 * 180 = 302400

302400/(6^8) = 175/972 = 0.18004115226

(参考) 高校数学の質問スレPart4 - 224~227

768:132人目の素数さん
19/11/12 19:57:36.41 lq5SO0wB.net
>>734 訂正
C[6,4]4!/6^8

769:132人目の素数さん
19/11/13 17:42:02 iNzL6wly.net
一辺2aの立方体と半径rの球が重なっているときの共通部分の体積の求め方を教えていただきたいです
立方体の中心と球の中心は一致しており、√2a<r<√3aの範囲で考えています
URLリンク(o.5ch.net)

770:132人目の素数さん
19/11/14 13:21:42.14 EVkGaf2l.net
マルチ

771:132人目の素数さん
19/11/15 01:52:17 khmlpwbS.net
>>737

V = 8aas - 8a(3rr-aa)arctan(s/a) + 16(r^3)arctan(s/r) - (2π/3)(4r^3 -9arr +3a^3),

ここに s = √(rr-2aa), (√2)a < r < (√3)a,

apuの解
URLリンク(twitter.com)

(Yahoo!知恵袋さんはまだ解けないようです。。。)
(deleted an unsolicited ad)

772:132人目の素数さん
19/11/15 01:54:34 lmi39YeD.net
apuこれ解けないってかなり数弱じゃないんか?w
単純に切るだけやん

773:132人目の素数さん
19/11/15 03:11:50.39 khmlpwbS.net
いや、解けてないのは知恵袋
URLリンク(detail.chiebukuro.yahoo.co.jp)
V = 8aas - 8a(3rr-aa){arctan(s/a) - (π/4)} + 16(r^3){arctan(s/r) - (π/6)},
 s = √(rr-2aa), (√2)a < r < (√3)a,

774:132人目の素数さん
19/11/15 11:52:09 UQF86OF6.net
問題:素数を説明せよ

解答:「1とその数以外で割り切れない数」

これは正解ですか。不正解ならば理由も説明しなさい。

775:132人目の素数さん
19/11/15 11:55:33 CcNmVGrD.net
不正解です。

2 は -1, -2 でも割り切れますが素数です。

776:132人目の素数さん
19/11/15 11:56:47 CcNmVGrD.net
「1 とその数以外の正の整数では割り切れない 1 よりも大きい正の整数」

が正しい素数の定義です。

777:132人目の素数さん
19/11/16 00:44:18 iMDULalJ.net
>>739 >>741

rを固定して aの関数と考える方が楽ですね^^
 v(a) = V(a,1)
とおく。
dv/da は 立方体の表面のうち 球の内部にある面積
 S(a) = 24aa    (0<a<1/√3)
 S(a) = 24as + 24(1-aa){(π/4) - arctan(s/a)},  (1/√3<a<1/√2)
aで積分して
 v(a) = V(a,1) = ∫[0,a] S(a')da'
 = 8aas + 8a(3-aa){(π/4) - arctan(s/a)} -16{(π/6) - arctan(s)},
 s = √(1-2aa),
そして
 V(a,r) = (r^3)V(a/r,1) = (r^3)v(a/r),

778:132人目の素数さん
19/11/18 01:34:30.47 JSToHWoE.net
x、yが独立でそれぞれ、N(μx,σ^2);N(μy,σ^2)に従うとき,x+yはN(μx+μy,2σ^2)に従うことを証明せよ
f(x,y)=f(x)f(y)と確率密度関数のf(x)=∫1/√2πσ~っていう式をつかう


779:ようです。 よろしくお願いします。



780:132人目の素数さん
19/11/18 03:31:31.31 W9Q6monY.net
x ~ N(μx, σ^2) より
f(x) = {1/(√(2π)σ)} exp{- (x-μx)^2 /(2σ^2)},
y ~ N(μy, σ'^2) より
g(y) = {1/(√(2π)σ')} exp{- (y-μy)^2 /(2σ'^2)},
これらを畳み込むと
(f・g)(a) = ∫[-∞,∞] f(x)g(a-x) dx
 = {1/(2πσσ')}∫[-∞,∞] exp{- (x-μx)^2 /(2σ^2) - (a-x-μy)^2 /(2σ'^2)} dx
指数部を平方完成する
 = {1/(2πσσ')} exp{- (a-μx-μy)^2 /(2SS)}∫[-∞,∞] exp{- (S/σσ')^2 (x-x。)^2 /2} dx
 = {1/(2πσσ')} exp{- (a-μx-μy)^2 /(2SS)} ・√(2π)・(σσ'/S)
 = {1/(√(2π)S)} exp{- (a-μx-μy)^2 /(2SS)},
ここで S^2 = σ^2 + σ'^2 とおいた。
∴ x+y ~ N(μx+μy, σ^2+σ'^2).

781:132人目の素数さん
19/11/19 17:11:08.45 MvZ1phLK.net
(別法)
x ~ N(μx, σ^2) より
 E(e^(tx)) = ∫[-∞,∞] e^(tx) f(x)dx = exp(μx・t +(1/2)σ^2・t^2)
y ~ N(μy, σ'^2) より
 E(e^(ty)) = ∫[-∞,∞] e^(ty) g(y)dy = exp(μy・t +(1/2)σ'^2・t^2)
xとyが独立ならば
 E(e^t(x+y)) = E(e^(tx)) E(e^(ty)) = exp((μx+μy)t +(1/2)(σ^2 +σ'^2)t^2)
x+y ~ N(μx+μy, σ^2 +σ'^2)
積率母関数(moment generating function) と云うらしいが。
〔系〕
x_i ~ N(μ_i, (σ_i)^2) のとき、
 x_1+x_2+・・・・+x_n ~ N(Σμ_i, Σ(σ_i)^2).
すなわち、正規分布は畳み込んでも正規分布のまま。
応用例
・誤差の解析 (Gauss)
・分子軌道(MO)法の計算ソフト"Gaussian" (Pople)

782:132人目の素数さん
19/11/19 17:16:02.62 kFEh3+x1.net
丁寧にありがとうございます!

783:イナ
19/11/19 20:44:30.78 cpZcv+oA.net
>>707
>>737コーナーからtの位置に入刀し、1面に平行に厚さtだけ切り分けると、
球の隅の8つの隙間の体積を、切った隙間の断面積をS(t)として、
t=0→a-√(r^2-2a^2)
まで足しあつめて、
∫[0→√(r^2-2a^2)]S(t)dt
立方体からコーナー8個引くと、
8a^3-8∫[0→√(r^2-2a^2)]S(t)dt
こういうことでしょ。
断面図描いて隙間の断面積をS(t)で表すってことでしょ。

784:132人目の素数さん
19/11/20 16:37:22 lyA84Cxa.net
>>747
平方完成するところ
 (x-μx)/σ = Hx,
 (y-μy)/σ' = Hy,
とおく。(偏差値?)
軸を回して
 (a-μx-μy)/S = C,
 (S/σσ')(x-μx) - (σ/σ')C = (S/σσ')(x-x。),
とおけば
 (Hx)^2 + (Hy)^2 = CC + (S/σσ')^2 (x-x。)^2,

785:132人目の素数さん
19/11/20 20:48:25.92 BKAvthGl.net
>>751
平方完成するところはexp^-(a-μx-μy)^2と exp^-2(x^2-xμx-xμy-ax)が出てきたので
exp^-(a-μx-μy)をまず積分の外に出して、次に後のexpをxでくくって,a-μx-μyをtで置き、
exp^-2(x-xt)となるので、平方完成してexp^(t/4)^2を外に出して、のこったexp^-(x-t/2)^2
は置換積分で消せました。

786:132人目の素数さん
19/12/08 19:20:23 ww6gQ3W8.net
Excelでsum ifって3d参照使えないんらしいんですが、3d参照っぽく使う方法って何かありますか?

787:132人目の素数さん
19/12/10 12:57:35.32 Fr6GXl1c.net
マルチ

788:132人目の素数さん
19/12/20 02:21:23.67 yiLw1Jz8.net
2130
しろ@huwa_cororon 11月27日
苦節6ヶ月、初満点&一等賞です!
URLリンク(twitter.com)
(deleted an unsolicited ad)

789:ななしの権兵衛
20/01/03 18:45:39.08 ZWwLStCC.net
URLリンク(i.imgur.com)
これ解ける人いますか?

790:132人目の素数さん
20/01/04 00:29:22.46 AvzOYNTT.net
URLリンク(sci.tea-nifty.com)
と同じようにやって、最後にt=1として答えπ/4?

791:132人目の素数さん
20/01/04 01:32:08.05 DOf/pMD3.net
この理由はなんか数論的な理由があるのでしょうか?
なんで1/7なのかとか他にもあるのか単なる偶然なのか
One-Seventh Ellipse
URLリンク(mathworld.wolfram.com)

792:132人目の素数さん
20/01/05 12:14:47.56 GjxrHs8R.net
ってか、気づいた人は相当の暇人?
ネタ本が面白そうですね。
The Penguin Book of Curious and Interesting Numbers

793:132人目の素数さん
20/01/05 18:31:10.04 IPi4y/nY.net
>>758
点対称な凸6角形は必ず1つの楕円を通る
あるベクトル (a, b) に沿って座標を k 倍すれば
すべての点が中心から等距離になると仮定して
立式し、値を求めてから
変換後の6角形の外接円、もとの楕円を
順に求めればよい

794:132人目の素数さん
20/01/06 02:41:02.47 iay27LR5.net
>>757
t>0 のとき
 ∫[0,∞] exp(-t・x) sin(x) dx = 1/(1+tt),  ・・・・ (*)
これを 1≦t<∞ で積分すれば
 ∫[0,∞] exp(-x) sin(x)/x dx = π/4,
* 高木:「解析概論」改訂第三版、岩波書店 (1961) p.115
  §35.積の積分 [例3]

795:132人目の素数さん
20/01/06 19:58:09.35 g3UqWwBL.net
多角形の周上を円が転がって一周する時に円の通り道にできる面積の問題
多角形の頂点のところにできる扇形の中心角を合わせたら360度になる理屈を教えてください
もしくは参考サイトを教えてください

796:132人目の素数さん
20/01/06 20:08:43.76 E4gCMQsb.net
中学一年生の数学の教科書

797:132人目の素数さん
20/01/06 21:35:46.52 g3UqWwBL.net
>>763
ゴミは消えろ

798:132人目の素数さん
20/01/06 21:57:23.70 QITen96h.net
中学二年生の数学の教科書

799:イナ
20/01/07 01:32:54.36 +rGyGxy4.net
>>750
>>762角度の合計が360°になるのは、その正多角形が正方形のときだと思う。なんで人に解かす? 自分が解くから面白いんじゃないのか?
正五角形だと108°×5=180°×3
正六角形だと120°×6=180°×4
正n角形だとx°×n=180°×(n-2)
x=180(n-2)/n
=180-360/n
正九角形だとx°=180°-360°/9=140°
正十角形だとx°=180°-360/10=144°
正十二角形だとx°=180°-360°/12=150°
正十五角形だとx°=180°-360°/15=156°
正十八角形だとx°=180°-360°/18=160°
面白いじゃないか。

800:イナ
20/01/07 01:47:48.87 +rGyGxy4.net
>>766
>>762
通り道の面積は、
道幅×道の長さ
だと思う。
正多角形でもただの多角形でも円が一周したら、道幅の半分を半径とした円周のぶんだけ、内回りより外回りのほうが長くなる。
それが言いたくてn角形の扇形n個をぜんぶ集めろって言ってんじゃないかな?

801:132人目の素数さん
20/01/07 02:20:45.34 ieeMtpuj.net
>>762
扇形の中心角が、その頂点の外角に等しいことを利用する
問題の前提として多角形が凸であることが条件

802:132人目の素数さん
20/01/07 06:41:38.54 lIEnr+jQ.net
多角形の外角の輪なんて、中学入試にも出るだろ。

803:132人目の素数さん
20/01/07 07:29:43.85 iiuZP5bH.net
>>756
π/4だそうです。

804:132人目の素数さん
20/01/11 06:26:40.05 RkMH+jmj.net
>>758
1/7 = 0.142857142857・・・・
 (1,4) - (8,5)
 (4,2) - (5,7)
 (2,8) - (7,1)
の中点は (9/2,9/2)
この6点は1つの楕円上にある。
 19xx +36xy +41yy -333x -531y +1638 = 0,
 x = 9/2 + X, y = 9/2 + Y とおくと
 19XX +36XY +41YY = 9・34,
 (30-√445)uu + (30+√445)vv = 9・34,
 長半径 a = 3√{34/(30-√445)} = 5.861979763759
 短半径 b = 3√{34/(30+√445)} = 2.447210984147

 (14,28) - (85,71)
 (28,57) - (71,42)
 (57,14) - (42,85)
の中点は (99/2,99/2)
この6点も1つの楕円上にある。
 165104xx -160804xy +41651yy -8385498x +3836349y +7999600 = 0,
 x = 99/2 + X, y = 99/2 + Y とおくと
 165104XX -160804XY +41651YY = 418367351/4,
 (5/2)(41351-√1643942785)uu + (5/2)(41351+√1643942785)vv = 418367351/4,
 長半径 a = 227.9100398
 短半径 b = 22.60195736

805:132人目の素数さん
20/01/11 17:50:44.73 rhXW3fVp.net
d^4+(-3 a^2/8)d^2(2a^3/16)d(-3 a^4/256-b)=0という 式が あります
a=1
b=24
と 仮定して 式を 書くと
dわ いくらですか?

806:132人目の素数さん
20/01/12 03:27:47.51 Zk2iyHAi.net
>>772
暇だったから計算してみたけどどうもうまくいかない
与式は
d^4 + ((-3a^2)/8)d^2 + ((2a^3)/16)d + (-3a^4)/(256-b) = 0
仮定
a=1
b=24
より
d^4 - (3/8)d^2 + (1/8)d - 3/232 = 0
であってる?

807:132人目の素数さん
20/01/12 03:40:03.24 Zk2iyHAi.net
とりあえず計算したところまで書くと
8d^4 - 3d^2 + d - 3/29 =0

d(8d^3 - 3d + 1) = 3/29

d(8d^3 + 1 - 3d) = 3/29

d((2d+1)(4d^2-2d+1) - 3d) = 3/29

d((2d+1)((2d+1)^2 -6d) - 3d) = 3/29

d((2d+1)^3 -6d(2d+1) - 3d) = 3/29

d((2d+1)^3 - 12d^2 - 9d) = 3/29

d((2d+1)^3 - 3d(4d-3)) = 3/29

d(2d+1)^3 - 3d^2(4d-3) = 3/29
ここまで
正解が見えないw

808:132人目の素数さん
20/01/12 03:43:21.52 Zk2iyHAi.net
>>774
間違えた
d((2d+1)^3 - 3d(4d+3)) = 3/29

d(2d+1)^3 - 3d^2(4d+3) = 3/29

809:132人目の素数さん
20/01/12 03:57:15.70 oEOj+5Qq.net
d^4 - (3a^2 /8)d^2 + (a^3 /8)d - (3/256)a^4 - b = 0,
b = 24a^4 のとき
(d - 9a/4){d^3 + (9a/4)d^2 + (75a^2 /16)d + (683/64)a^3} = 0,
d = 9a/4 = 2.25a,
d = -{(3/4) + (√17 +4)^(1/3) - (√17 -4)^(1/3)}a = -2.26274532661833 a
複素数解が2つある。

810:132人目の素数さん
20/01/15 04:48:08 fld1R6bo.net
ほう

811:132人目の素数さん
20/01/15 11:10:05 0Yai4QdM.net
>>760
> 点対称な凸6角形は必ず1つの楕円を通る

対称心を原点とすると楕円は
 Axx +Bxy +Cyy = 1

3点 (x1,y1) (x2,y2) (x3,y3) がこれを満たすとすると、
クラメールの公式より
 A = -{(y1y2)z3 + (y2y3)z1 + (y3y1)z2}/?,
 B = {(x1y2+x2y1)z3 + (x2y3+x3y2)z1 + (x3y1+x1y3)z2}/?,
 C = -{(x1x2)z3 + (x2x3)z1 + (x3x1)z2}/?,
ここに
 z1 = x2y3 - x3y2,
 z2 = x3y1 - x1y3,
 z3 = x1y2 - x2y1,
 ? = z1・z2・z3,

812:132人目の素数さん
20/01/16 03:54:32 OJEDTyLo.net
URLリンク(imgur.com)
上の式を ルートの なかに いれると いくらですか
つまり
上の式を xとすれば
√xを もとめるのです

813:132人目の素数さん
20/01/16 07:38:50.27 RyiBVfYr.net
電卓で

814:132人目の素数さん
20/01/16 11:14:08 9JmmA2mq.net
a = -4{4(3+11√17)}^(1/3) = -23.13260853384439
b = 4{4(11√17 -3)}^(1/3) = 22.13325830724682
とおくと
ab = -512,
a^3 + b^3 - 3ab = 0,

 1/(1+a+


815:b) = (1^3 +a^3 +b^3 -3ab)/(1+a+b) = 1 +aa +bb -a -b -ab,  x = 1/{64(1+a+b)} +a/4 +(81/64)b -1/32   = (1 +aa +bb -a -b -ab)/64 +a/4 +(81/64)b -1/32   = 46.24484760116 電卓で  √x = 6.80035642155



816:132人目の素数さん
20/01/20 11:58:30 Rp5xpGRn.net
ここで質問するには簡単すぎるかもしれませんが困ってます。
三角関数?の質問です
図にしてみました。
紫●のx,y値を出す計算式って作成可能ですか?
URLリンク(f.easyuploader.app)

817:132人目の素数さん
20/01/20 17:26:35 TnLEPQ0K.net
なんでz軸が2本なの?

818:132人目の素数さん
20/01/20 18:11:22 Rp5xpGRn.net
>>783
図が間違っていましたね、すみません。
少し判りづらかったので修正
紫●のx,y値を出す計算式って作成可能ですか?
紫●x=
紫●y=
の計算式が知りたいです。
URLリンク(f.easyuploader.app)

819:132人目の素数さん
20/01/20 20:27:57.78 rHEqf9mL.net
4状態2記号のビジービーバーマシンの最大シフト数 N が与えられたとき
( シフト数と状態数と記号数のみで、ルール表は教えてもらっていないとき )
4状態2記号のチューリングマシンを全て N ステップまで実行し
Nを越えたものは無限ループするチューリングマシンと確定するので
ちょうどNで停止するもののルール表をみつけるプログラム

820:132人目の素数さん
20/01/20 20:28:47.45 rHEqf9mL.net
4状態2記号のルール表は
4つの各状態で0か1を読み取った場合の 4x2 の表に
次の状態が(停止状態を含めて)5通り
書き込む記号が2通り
ヘッドの移動する方向が2通り
なので (5x2x2) の 8乗 通りある
ルール表を表す変数の名前の規則は
aの後の1-8の数字が状態と読み取った記号の8通りの場合で
そのあとに n とつく ( a1n 等 ) ものは 次の状態を表し、
wd とつく ( a1wd 等 ) ものは 2ビットで書き込む記号と ヘッドの移動方向を表す

OpenCLのカーネルでは
CPUからGPUへのワークの発行1回で
ルール表の 4x2 の 3つの部分は ワーク内の全てのスレッドで固定して ( この3つは発行1回ごとにCPUで順に切り替える )
残りのうち3つは 1度に発行した 20の3乗 = 8000 個のスレッドのIDを
あらかじめ作っておいた 8000要素の配列の添え字で切り替えて
残りの2つの部分は 各スレッドで 20の2乗 回のループで切り替える
8000要素の配列はその前のワーク内全てで固定した部分をCPUでのループで書き換えてもそのまま使えるようになっている

821:132人目の素数さん
20/01/20 20:29:12.21 rHEqf9mL.net
カーネル内でチューリングマシンを実行するとき GPGPUでの実行なので、
テープを大きな配列で表わしてヘッドの位置を添え字で指定する方法は( *コアレスアクセス* にならないので)使えないので
長さ256ビットの2記号のテープを32ビット整数8つで表わし、
8回の短いループだけで1ビットを読み出し (こうすればGPUの演算機のグループは揃ったメモリアクセスをしてくれる)
状態遷移後も同様のループで1ビットを書き出す

Wikipediaのビジービーバー関数の記事にはこの答えとなるルール表が載っているが、
このプログラムの実行結果で最初に表示されるものが正しいかどうかの記事との比較のときは
状態とルールの並び順をそのままに比較しても一致しているとは限らない
記事でのルール表の状態の番号が違うだけの同型の結果を最初に表示している可能性があることに注意

自分のPCでこのプログラムを実行した結果
25600000000通り ( 256億通り ) のルール表が存在するが、
10~20分程度で実行完了して正解のルール表に一致していた
ビジービーバー関数は本来、プログラム等で指定した状態数記号数のものの 最大シフト数を求めたりはできないが、
( 全てのルール表について、そのルールだと無限ループする場合、そうなることの証明が必要 、
有限ステップをシミュレートしただけでは その先残りの有限ステップ実行すれば停止するのか、
それともそのまま無限ループするかの判定はできない )
今回は最大シフト数から逆にルール表をみつける問題なのでコンピュータで探索することができた

GPGPUではなく、CPUでマルチコアを利用して解いた場合、上記のスペックだとどれくらいの時間がかかるかの確認が必要
そのためにはCPUでの実行に特化したコードを新たに書く必要がある

822:132人目の素数さん
20/01/20 20:31:39 rHEqf9mL.net
URLリンク(en.wikipedia.org)

823:132人目の素数さん
20/02/07 07:55:41 +oG3MazN.net
誤爆

824:132人目の素数さん
20/02/10 00:22:59 ESp//Bly.net
>>784
点A,Bの座標を各々A(Xa,Ya,Za),B(Xb,Yb,Zb)とする。ただしZa≠Zb
直線AB上の点P(X,Y,Z)は↑OP=↑OA+k↑ABと表されるから
(X,Y,Z)=(Xa+k(Xb-Xa),Ya+k(Yb-Ya),Za+k(Zb-Za))
Z=Za+k(Zb-Za)だから、k=(Z-Za)/(Zb-Za)
よって、
(X,Y,Z)=(Xa+(Z-Za)(Xb-Xa)/(Zb-Za),Ya+(Z-Za)(Yb-Ya)/(Zb-Za),Za+(Z-Za)(Zb-Za)/(Zb-Za))
=((Z(Xb-Xa)+Xa(Zb-Za)-Za(Xb-Xa))/(Zb-Za),(Z(Yb-Ya)+Ya(Zb-Za)-Za(Yb-Ya))/(Zb-Za),(Z(Zb-Za)+Za(Zb-Za)-Za(Zb-Za))/(Zb-Za))
=((Z(Xb-Xa)+XaZb-ZaXb)/(Zb-Za),(Z(Yb-Ya)+YaZb-ZaYb)/(Zb-Za),Z)

X=(Z(Xb-Xa)+XaZb-ZaXb)/(Zb-Za)
Y=(Z(Yb-Ya)+YaZb-ZaYb)/(Zb-Za)

825:132人目の素数さん
20/02/10 02:57:02 esjbRF9d.net
>>781
s = 1+a+b は
 (s-1)^3 + 1536 s = 0,
の実根.
s = 1+a+b
 = 0.000649773402431504635832575
 = 0.9980519461347911206388357 / 1536

826:132人目の素数さん
20/02/10 03:03:13 esjbRF9d.net
>>781
s = 1+a+b は
 s^3 -3s^2 + 1539s -1 = 0,
の実根.
s = 1+a+b
 = 0.000649773402431504635832575
 = 1.000001266342085634546333 / 1539

827:132人目の素数さん
20/02/10 18:19:19 ai938x4J.net
>>787
URLリンク(ideone.com)

828:132人目の素数さん
20/02/10 18:20:32 ai938x4J.net
>>787
URLリンク(ideone.com)

829:132人目の素数さん
20/02/13 08:03:06 8bKSb4oB.net
〔問1〕
次の方程式を解いてください。
 (x-1)(x-2)(x-3)(x-4)(x-5)(x-6) = 2240.

URLリンク(suseum.jp)

830:イナ ◆/7jUdUKiSM
20/02/13 10:20:09 7VewwRjX.net
>>767
>>795
2240=2^6・5・7
2・3・4・5・6・7=5040
1・2・3・4・5・6=720
1<x-6<2
7<x<8で探すと、
6.531128875・5.531128875・4.531128875・3.531128875・2.531128875・1.531128875=2240
∴x=7.531128875

831:132人目の素数さん
20/02/13 20:56:32 2HOlYKn6.net
>>795
t=x^2-7xとおくと
(t+6)(t+10)(t+12)=2240
t^3+28t^2+252t-1520=0
(t-4)(t^2+32t+380)=0
∴ t=4 または t=-16±2√31i

t=4のとき x^2-7x=4より
 x = (7±√65)/2

t=-16±2√31iのとき x^2-7x = -16±2√31i を平方完成して
(x-7/2)^2 = -15/4±2√31i = ((4±√31i)/2)^2 より
 x = (11±√31i)/2 , (3±√31i)/2

832:132人目の素数さん
20/02/13 21:11:33 2HOlYKn6.net
なお、t^2+32t+380 は、u=x-7/2とおくとt=u^2-49/4となるので、

t^2+32t+380 = u^4+(15/2)u^2+2209/16
= (u^2+47/4)^2-16u^2
= (u^2+4u+47/4)(u^2-4u+47/4)
= (x^2-3x+10)(x^2-11x+38)

と因数分解できる

833:132人目の素数さん
20/02/14 06:17:43 heAECOvK.net
>>796
 正解です。
 x → 7-x としても不変ですね。

>>797-798
 正解です。

834:132人目の素数さん
20/02/22 15:27:54


835:ttPrI0qH.net



836:132人目の素数さん
20/02/22 16:55:17 dhi3UR7B.net
しらんけど
基底を取るってのと正規化はまるで別物と思うがよ
基底による座標が0~1の範囲に収まるように基底を正規化するという使い方はあるかもねしらんけど

837:132人目の素数さん
20/02/23 10:53:56 x7t3H8Td.net
産んで―
産んで―
ボクの子産んで―

838:132人目の素数さん
20/02/23 10:54:31 x7t3H8Td.net
誤爆

839:132人目の素数さん
20/02/23 12:34:07 cPv7t5pY.net
河島英五?

840:132人目の素数さん
20/02/23 12:58:30 bSpVTpjW.net
産んで―、産んで―、産み疲れるまで産んで―

841:132人目の素数さん
20/02/23 13:19:33 l2/N4aPd.net
>>800
時系列データの基底て、時系列データを基底関数の和で表すだけやん
正規化と全く別じゃんか

842:132人目の素数さん
20/02/23 14:49:33.47 X8vnAey3.net
産んで―、産んで―、産み疲れるまで産んで―
あなたのー まらはたおれて よこになり ぶたにくわれてー

843:132人目の素数さん
20/02/23 19:06:57.82 HSTW2ieT.net
雲泥の差のある馬鹿が同じ胞衣とは思いたくすらない。

844:132人目の素数さん
20/02/24 00:18:38 ZgFO3Yfl.net
今「盗んだ情報で偉そうにしているからだ。」
という意味不明な誹謗が聞こえてきた。
何故、偉そうにしているというような言動を聞かされなければならないのか?

基本的に何の利益もないのにも関わらず、私が独り言で話していることを盗聴し
それでとやかく言う権利は他の人間にはあろうはずがない。

誹謗だけを聞かせたり、子供に私に対する文句を言わせたり、ガキ過ぎて
反吐が出る。このような意味不明な幼稚な嫌がらせを行う女々しい人間が
多数毎日のように湧いて出てくることは残念だ。

何故、意味不明な面と向かって文句を言うことのできないカス野郎に
「殺してやる。(大爆笑)」
と言われなければならないのか?

845:e+pi ◆q1KYhiCvXQ
20/02/24 12:44:38 QTYHRbRk.net
eとpiを足すと超越数になるかどうかを証明してください。

846:e+pi ◆q1KYhiCvXQ
20/02/24 12:45:58 QTYHRbRk.net
間違えましたおそらく超越数だと思うのですが証明方法が分からないので
その証明をmizarシステムで書き下してください

お願いします 100円あげるから
教授に殺される

847:132人目の素数さん
20/02/24 14:43:00 bcnIOipe.net
>>810
それって判定できたんだっけ?
e+πとeπの両方とも超越数でないなら
x^2 -(e+π)x +eπ = 0
の解も超越数でなくなってしまうので
e+πとeπの少なくとも一方は超越数ということは分かるけれど
e+πが超越数かどうかは簡単には分からなかった気がする

848:132人目の素数さん
20/02/24 17:07:53 HbSiCqb/.net
>>811
既存の理論では微分ガロア理論が e+π などの超越性を判定するための一つの研究法になるけど、パソコンは使わない。
普通の超越数論の知識はそういうような判定には余り使えない。
普通の超越数論の知識では手探りで判定するしかない。

849:132人目の素数さん
20/02/24 17:20:44.09 HbSiCqb/.net
>>810
もしかしたら幾何的に判定出来るかも知れないけど、やってみないと分からない。
e+π と e-π のうち片方は超越数になるから、単位円周上で幾何的に考える限りでは、どっ�


850:ソも超越数になる感じがする。



851:132人目の素数さん
20/02/24 19:28:43 34cHjcwm.net
>>812
判定法なんかない。
無理数、超越数になるための十分条件はいくつか発見されてるけどe+πが満たすものは今のところない。

852:132人目の素数さん
20/02/25 07:48:26 vq/DQVzL.net
>>810
例えば、面倒な e<28/10 や 31/10<π<32/10 の評価式を省略して
チートな方法を使えば、e+π の超越性は以下のように幾何的に示せる。

e+π=a aは代数的数 とする。eは超越数だから b=π-e は超越数。
π≒3.14 から、31/10<π<32/10。
5<a=Σ_{k=0,1,…,+∞}(1/k!)+π<28/10+π<28/10+32/10=6
から、3π<(a-2)π<4π。
0<b<π-Σ_{k=0,1,…,+∞}(1/k!)<π-5/2<1
から、2π<(b+2)π<3π。
ここに、5<a<6、0<b<1 で、3は1と5の間の唯1つの奇数。
cos((a-2)π)=cos(aπ)、sin((a-2)π)=sin(aπ)。
また、cos((b+2)π)=cos(bπ)、sin((b+2)π)=sin(bπ)。

853:132人目の素数さん
20/02/25 07:52:11 vq/DQVzL.net
>>810
(>>816の続き)
平面 R^2 上において、原点 O(0,0) からx軸正方向への半直線を考えて、点 O(0,0) が中心の単位円周C上で、
点 A(1,0) を A(1,0) から反時計回りに角 (a-2)π=(e+π-2)π だけ回転させた点は、B(cos(aπ),sin(aπ))。
同様に考えて、点 O(0,0) が中心の単位円周C上で、点 A(1,0) を A(1,0) から
反時計回りに角 (b+2)π=(π-e+2)π だけ回転させた点は、C(cos(bπ),sin(bπ))。
同様に考えて、点 O(0,0) が中心の単位円周C上で、点 A(1,0) を A(1,0) から反時計回りに角 3π だけさせた点は (-1,0)。
同様に考えて、点 O(0,0) が中心の単位円周C上で、点 A(1,0) を A(1,0) から反時計回りに角 5π/2 だけ回転させた点は (0,1)。
同様に考えて、点 O(0,0) が中心の単位円周C上で、点 A(1,0) を A(1,0) から反時計回りに角 7π/2 だけ回転させた点は、(0,-1)。
このとき、点 O(0,0) が中心の単位円周C上で A(1,0) を A(1,0) から
反時計回りに回転させた5つの角 (a-2)π、(b+2)π、3π、5π/2、7π/2 について、
2π<(b+2)π<5π/2<3π<7π/2<(a-2)π<4π。
よって、2点 B(cos(aπ),sin(aπ))、C(cos(bπ),sin(bπ)) はx軸で線対称で、cos(aπ)=cos(bπ)、sin(aπ)=-sin(bπ) が成り立つ。
実関数 cos(x) は [(2k+1)π,2kπ] kは任意の整数 で単調増加、cos(x) は [2kπ,(2k+1)π] kは任意の整数 で単調減少である。
また、実関数 sin(x) は [(2k-1)π/2,(2k+1)π/2] kは任意の偶数 で単調増加、sin(x) は [(2k-1)π/2,(2k+1)π/2] kは任意の奇数 で単調減少である。
中心が点 O(0,0) の単位円周C上において、点 A(1,0) を点 (1,0) から反時計回りに回転させた
2つの角 (a-2)π=(e+π-2)π、(b+2)π=(π-e+2)π について、2π<(b+2)π<5π/2、7π/2<(a-2)π<4π なので、
4π-(a-2)π=(b+2)π)-2π が成り立つ。故に、π>0 から 6-a=b を得る。
6-aは代数的数で、bは超越数だから、6-a≠b に反し矛盾。故に、背理法により、e+π は超越数。

854:132人目の素数さん
20/02/25 08:02:24 vq/DQVzL.net
>>810
e<28/10 や 31/10<π<32/10 の評価式を省略した上に
π-e の方はやっていないんで、>>816-817はまだ未完成ということで。

855:132人目の素数さん
20/02/25 08:03:39 0r958D9Y.net
なんかきた

856:132人目の素数さん
20/02/25 09:19:17.84 WMW0bPzH.net
>>817
>2π<(b+2)π<5π/2<3π<7π/2<(a-2)π<4π。
>よって、2点 B(cos(aπ),sin(aπ))、C(cos(bπ),sin(bπ)) はx軸で線対称で、cos(aπ)=cos(bπ)、sin(aπ)=-sin(bπ) が成り立つ。
成り立たない
aπ+bπ=2ππ

857:132人目の素数さん
20/02/25 12:22:48.37 vq/DQVzL.net
e+π=a aは代数的数 とする。eは超越数だから b=π-e は超越数である。
π≒3.14 から、31/10<π<32/10。
5<a=Σ_{k=0,1,…,+∞}(1/k!)+π<28/10+π<28/10+32/10=6
から、3π<(a-2)π<4π。
0<b<π-Σ_{k=0,1,…,+∞}(1/k!)<π-5/2<1
から、2π<(b+2)π<3π。
ここに、5<a<6、0<b<1 で、3は1と5の間の唯1つの奇数。
cos((a-2)π)=cos(aπ)、sin((a-2)π)=sin(aπ)。
また、cos((b+2)π)=cos(bπ)、sin((b+2)π)=sin(bπ)。
平面 R^2 上において、原点 O(0,0) からx軸正方向への半直線を考えて、点 O(0,0) が中心の単位円周C上で、
点 A(1,0) を A(1,0) から反時計回りに角 (a-2)π=(e+π-2)π だけ回転させた点は、B(cos(aπ),sin(aπ))。
同様に考えて、点 O(0,0) が中心の単位円周C上で、点 A(1,0) を A(1,0) から
反時計回りに角 (b+2)π=(π-e+2)π だけ回転させた点は、C(cos(bπ),sin(bπ))。
同様に考えて、点 O(0,0) が中心の単位円周C上で、点 A(1,0) を A(1,0) から反時計回りに角 3π だけさせた点は (-1,0)。
同様に考えて、点 O(0,0) が中心の単位円周C上で、点 A(1,0) を A(1,0) から反時計回りに角 5π/2 だけ回転させた点は (0,1)。
同様に考えて、点 O(0,0) が中心の単位円周C上で、点 A(1,0) を A(1,0) から反時計回りに角 7π/2 だけ回転させた点は、(0,-1)。
このとき、点 O(0,0) が中心の単位円周C上で A(1,0) を A(1,0) から
反時計回りに回転させた5つの角 (a-2)π、(b+2)π、3π、5π/2、7π/2 について、
2π<(b+2)π<5π/2<3π<7π/2<(a-2)π<4π。

858:132人目の素数さん
20/02/25 12:25:22.61 vq/DQVzL.net
(>>821の続き)
ところで、0<π/2<b+2=π-e+2<π<a-2=e+π-2<3π/2<2π。
ここに、π/2-e+2>0、e-2<28/10-2=4/5<π/2。
f:R^2∋(a,b) → a+bi∈C は加法+について同型写像で、
e^{(b+2)i}=e^{(π-e+2)i}=-e^{(-e+2)i}、e^{(a-2)i}=e^{(e+π-2)i}=-e^{(e-2)i}。
複素平面C上で2点 e^{(b+2)i}=-e^{(-e+2)i}、e^{(a-2)i}=-e^{(e-2)i} は実軸について対称だから、
平面C上で2点 e^{(b+2)πi}=-e^{(-e+2)πi}=-e^{(-e)πi}、e^{(a-2)πi}=-e^{(e-2)πi}=-e^{eπi} は実軸について対称である。
加法群 R^2 と加法群Cは加法+について同型だから、平面 R^2 上の2点 B(cos(aπ),sin(aπ))、C(cos(bπ),sin(bπ)) は
x軸で線対称で、cos(aπ)=cos(bπ)、sin(aπ)=-sin(bπ) が成り立つ。
実関数 cos(x) は [(2k+1)π,2kπ] kは任意の整数 で単調増加、cos(x) は [2kπ,(2k+1)π] kは任意の整数 で単調減少である。
また、実関数 sin(x) は [(2k-1)π/2,(2k+1)π/2] kは任意の偶数 で単調増加、sin(x) は [(2k-1)π/2,(2k+1)π/2] kは任意の奇数 で単調減少である。
中心が点 O(0,0) の単位円周C上において、点 A(1,0) を点 (1,0) から反時計回りに回転させた
2つの角 (a-2)π=(e+π-2)π、(b+2)π=(π-e+2)π について、2π<(b+2)π<5π/2、7π/2<(a-2)π<4π なので、
4π-(a-2)π=(b+2)π)-2π が成り立つ。故に、π>0 から 6-a=b を得る。
6-aは代数的数で、bは超越数だから、6-a≠b に反し矛盾。故に、背理法により、e+π は超越数。

859:132人目の素数さん
20/02/26 03:25:34.86 jrzfCjiF.net
>>818
e = Σ[k=0,∞] 1/k!
 < 1 + 1 + (1/2)Σ[k=2,∞] 1/3^(k-2)
 = 1 + 1 + (1/2)(3/2)
 = 2.75
π > 12sin(15°) = 3(√6 - √2) = 3.10582854
π < 4sin(30°) + 2tan(30°) = 2 + 2/√3 = 3.1547


860:0054   (Snellius-Huygens)



861:132人目の素数さん
20/02/26 07:24:01 bJq24aNY.net
>>822
>複素平面C上で2点 e^{(b+2)i}=-e^{(-e+2)i}、e^{(a-2)i}=-e^{(e-2)i} は実軸について対称だから、
>平面C上で2点 e^{(b+2)πi}=-e^{(-e+2)πi}=-e^{(-e)πi}、e^{(a-2)πi}=-e^{(e-2)πi}=-e^{eπi} は実軸について対称である。
成立しない
e^{(b+2)i}=-e^{(-e+2)i}
でも
e^{(b+2)πi}=-e^{(-e+2)πi}
ではない
aの方も同様

862:132人目の素数さん
20/02/26 17:00:54 FoYyo1LI.net
>>823
>π < 4sin(30°) + 2tan(30°) = 2 + 2/√3 = 3.15470054
>  (Snellius-Huygens)
既に証明されている定理だったのか。
車輪の再発明に終わったけど、三角関数をテイラー展開したら示せた。

>>824
紙で計算して確認たら、偏角の主値は取れずそこが間違っていたことは分かった。

863:132人目の素数さん
20/02/26 17:03:57 FoYyo1LI.net
>>825
紙で計算して確認「し」たら、

864:132人目の素数さん
20/02/26 17:19:11 jrzfCjiF.net
>>825

GM-AM より
 1 < {cosθ + cosθ + 1/(cosθ)^2}/3,
θで積分して
 θ < (sinθ + sinθ + tanθ)/3,
 (Snellius-Huygens)

ついでに
 A = (sinθ+sinθ+tanθ)/3,
 G = sinθ/(cosθ)^(1/3),
 H = 3sinθ/(1+1+cosθ),
とおくと
 sinθ < H < θ < G < A < tanθ,
 (B.C.Carlson)

865:132人目の素数さん
20/02/26 17:28:07 FoYyo1LI.net
>>827
円に関する色々な不等式があるのか。

866:132人目の素数さん
20/02/26 22:01:22 bJq24aNY.net
>>825
>紙で計算して確認たら、偏角の主値は取れずそこが間違っていたことは分かった。
間違えることのないようにする勘所を身に付けるべき
まず
べき乗については
(ab)^c=a^cb^c
a^(bc)=(a^b)^c
のようなことが成り立つべきと認識してないから
(-a)^π=-a^π
のようなあり得ない間違いを犯す
符号とはどういうモノかの認識が甘い

867:132人目の素数さん
20/02/27 03:08:16 TNO8xm7g.net
>>829
>まず
>べき乗については
>(ab)^c=a^cb^c
>a^(bc)=(a^b)^c
>のようなことが成り立つべきと認識してないから
そういう紙で計算すればすぐ分かるようなことの指摘は不要。
(-1)^π=-1 は成り立たないということが重要。

868:132人目の素数さん
20/02/27 04:33:05 6SmBw6gg.net
>>823 >>827
 18sin(30°)/{1+1+cos(30°)} < π < 4sin(30°) + 2tan(30°)
  9/{2+(√3)/2} < π < 2 + 2/√3,
  3.1402 < π < 3.1547

(15°を使えば改善する・・・・)

869:132人目の素数さん
20/02/27 07:48:00 +aKM6MLC.net
>>830
>そういう紙で計算すればすぐ分かるようなことの指摘は不要。
そういうことが肌感覚で分かっていないから無駄なことをするのよ

870:132人目の素数さん
20/02/27 07:49:50 +aKM6MLC.net
>>830
>(-1)^π=-1 は成り立たないということが重要。
重要なのは
-a=(-1)a
だということ

871:132人目の素数さん
20/02/27 07:54:01.78 TNO8xm7g.net
>>832
>無駄なことをするのよ
方法自体、はじめてした試みである。
ムダかどうかは、まだ分からない。

872:132人目の素数さん
20/02/27 07:57:49.72 +aKM6MLC.net
(-1)^π=e^(2n+1)ππi
となるという認識が甘い
良く例に出る
i^i=e^-(4n+1)π/2
のようなことも肌感覚を持つべき

873:132人目の素数さん
20/02/27 07:58:21.93 TNO8xm7g.net
>>833
>重要なのは
>-a=(-1)a
>だということ
こういうことは既に承知の上だから、>>830のようにそのようなバカげた指摘は不要と書いている。

874:132人目の素数さん
20/02/27 07:59:14.93 +aKM6MLC.net
>>834
>ムダかどうかは、まだ分からない。
複素数や回転(三角関数)で何とかなると思う方が認識が甘すぎ

875:132人目の素数さん
20/02/27 08:00:09.89 +aKM6MLC.net
>>836
つまり馬鹿げていることに気が付かないで話を進めるだけの馬鹿ということね

876:132人目の素数さん
20/02/27 08:03:10 TNO8xm7g.net
>>837
>複素数や回転(三角関数)で何とかなると思う方が認識が甘すぎ
自慢ではないが、有理性の判定は既にその方法で出来た。

877:132人目の素数さん
20/02/27 08:03:58 +aKM6MLC.net
>>839
>有理性の判定
何の有理性?

878:132人目の素数さん
20/02/27 08:07:37 TNO8xm7g.net
e±π はどちらも無理数になることは示せた。

879:132人目の素数さん
20/02/27 08:11:05 TNO8xm7g.net
>>840
複素数や回転(三角関数)ではないが、オイラーの定数Cの有理性も示せた。

880:132人目の素数さん
20/02/27 08:11:25 +aKM6MLC.net
>>841
証明見せて

881:132人目の素数さん
20/02/27 08:14:11 +aKM6MLC.net
>>842
こっちは見せてくれなくてイイよ
どうせ下らないから

882:132人目の素数さん
20/02/27 08:17:34.56 TNO8xm7g.net
>>843
>>838で私をバカ�


883:ノした他、超越性や無理性のテキストには載っていなく自分で開発した方法を使っていることもあり、見せる気はしない。



884:132人目の素数さん
20/02/27 08:25:02.17 TNO8xm7g.net
>>844
Cについては、膨大な計算をした結果得られたから、正しいと思われる。
証明は優に300行以上にはなる。

885:132人目の素数さん
20/02/27 08:42:33.60 sLEjHY4t.net
>>847
> 膨大な計算
からの
> 証明は優に300行以上にはなる。
というのは、笑うところですか?

886:132人目の素数さん
20/02/27 09:01:03.75 TNO8xm7g.net
>>847
1、2行で言葉で単純には済まないようなゴチャゴチャした計算や不等式の評価式を経由するところを見ると、笑えないとは思う。

887:132人目の素数さん
20/02/27 10:12:03.74 HY6jkWJ2.net
二つの相似な三角形は対応する辺が平行な場合は
対応する頂点を結ぶと一点で交わる⇔相似 ですが
平行でない場合に線を引くだけで相似かどうかを判定する方法はありますか?

888:132人目の素数さん
20/02/27 10:21:10.54 HY6jkWJ2.net
失礼 ⇒は成立しないか。相似以前に合同を線を引くだけで判定するのも可能なのかどうか。。

889:132人目の素数さん
20/02/27 16:16:45 TNO8xm7g.net
>>810
e+π を代数的数とする。a=e+π、b=π-e とする。eは超越数だから、仮定とbの定義からbは超越数である。
π≒3.14 から、31/10<π<32/10。
5<a=Σ_{k=0,1,…,+∞}(1/k!)+π<28/10+π<28/10+32/10=6、 0<b=π-Σ_{k=0,1,…,+∞}(1/k!)<π-5/2<1
から、0<b<π<a<6<2π。cを b<c<a なる任意の代数的数とする。
c>0 に注意して d(c)=a/c、d'(c)=b/c とする。d(c) をd、d'(c) を d' と略記する。
平面 R^2 上において、原点 O(0,0) からx軸正方向への半直線を考えて、点 O(0,0) が中心の単位円周C上で、
点 A(1,0) を A(1,0) から反時計回りに角 π^2/c だけ回転させた点 X(cos(π^2/c),sin(π^2/c)) と点 O(0,0) とを結ぶ直線を L(c) とする。
加法定理から、cos((d-1)π)=-cos(dπ)、sin((d-1)π)=-sin((dπ) だから、平面 R^2 上において、
原点 O(0,0) からx軸正方向への半直線を考えて、点 O(0,0) が中心の単位円周C上で、点 A(1,0) を A(1,0) から反時計回りに
角 (d-1)π=((a/c)-1)π=((e+π)/c-1)π だけ回転させた点は、B(-cos(dπ),-sin(dπ)) である。
平面 R^2 上において、原点 O(0,0) と点 B(-cos(dπ),-sin(dπ)) とを結ぶ直線を (L_1)(c) とする。
また加法定理から、cos((d'+1)π)=-cos(d'π)、sin((d'+1)π)=-sin(d'π) だから、同様に、平面 R^2 上において、
原点 O(0,0) からx軸正方向への半直線を考えて、点 O(0,0) が中心の単位円周C上で、点 A(1,0) を A(1,0) から
反時計回りに角 (d'+1)π=((b/c)+1)π=((π-e)/c+1)π だけ回転させた点は、C(-cos(d'π),-sin(d'π)) である。
平面 R^2 上において、原点 O(0,0) と点 C(-cos(d'π),-sin(d'π)) とを結ぶ直線を (L_2)(c) とする。
同様に考えて、点 O(0,0) が中心の単位円周C上で、点 A(1,0) を A(1,0) から反時計回りに角 π だけさせた点は (-1,0) である。
同様に考えて、点 O(0,0) が中心の単位円周C上で、点 A(1,0) を A(1,0) から反時計回りに角 2π だけ回転させた点は、A(1,0) である。

890:132人目の素数さん
20/02/27 16:22:09 TNO8xm7g.net
>>810
(>>851の続き)
このとき、点 O(0,0) が中心の単位円周C上で A(1,0) を A(1,0) から反時計回りに回転させた3つの角 (d-1)π=((e+π)/c-1)π、
(d'+1)π=((π-e)/c+1)π、2π について (d-1)π>0 かつ 0<(d'+1)π<2π かつ (d-1)π≠(d'+1)π。
((d-1)+(d'+1))/2=(d+d')/2=((e+π)+(π-e))/(2c)=π/c だから ((d-1)π+(d'+1)π)/2=π^2/c である。
よって、平面 R^2 上で、L(c) と (L_1)(c) のどちらか片方の直線から他の片方の直線へと反時計回りに回転させて
測ったときの角の大きさと、L(c) と (L_2)(c) のどちらか片方の直線から他の片方の直線へと反時計回りに回転させて
測ったときの角の大ささとはどちらも π^2/c=(π/c)π に等しくなる。
b=π-e<c<e+π=a なる代数的数cは任意であるから、b<c<a なる代数的数cを走らせて、c→π とすれば、π/c → 1 となって、
lim_{c→π}(L(c))=lim_{c→π}( (L_1)(c) )=lim_{c→π}( (L_2)(c) )=(x軸)
が成り立つことになり、lim_{c→π}(L(c)) と lim_{c→π}( (L_1)(c) ) のなす角の片方と、
lim_{c→π}(L(c)) と lim_{c→π}( (L_2)(c) ) のなす角の片方とはどちらも 1π か0に収束し、
(超越数)×π の形で表されないことになり矛盾が生じる。
この矛盾は e+π を代数的数としたことから生じたから、背理法により e+π は超越数である。

891:132人目の素数さん
20/02/27 16:34:19 5cc8+UEj.net
>>851-852
専用スレ

【速報】円周率と自然対数の底を足すと超越数になることが証明された【数学】
スレリンク(math板)

があるんだからそっちでやるべし。

892:132人目の素数さん
20/02/27 17:03:24 TNO8xm7g.net
>>810
>>852に修正すべき部分があることもあり、>>853の提案通り専用スレに移動する。

893:132人目の素数さん
20/02/27 19:45:07 6SmBw6gg.net
>>831
 15゚を使えば

 36sin(15゚)/{1+1+cos(15゚)} < π < 8sin(15゚) + 4tan(15゚),
 9(√6 -√2)/{2 + (√6 +√2)/4} < π < 2(√6 -√2) + 4(2-√3),
 3.141510 < π < 3.142349

894:132人目の素数さん
20/02/27 19:53:21 6SmBw6gg.net
>>828
双曲線版もある。。。

GM-AMより
 1 < {cosh(t) + cosh(t) + 1/cosh(t)^2}/3,
tで積分して
 t < {sinh(t)+sinh(t)+tanh(t)}/3,

ついでに
 A = {sinh(t)+sinh(t)+tanh(t)}/3,
 G = sinh(t)/{cosh(t)^(1/3)},
 H = 3sinh(t)/{1+1+cosh(t)},
とおくと
 tanh(t) < H < t < G < A < sinh(t),

895:132人目の素数さん
20/02/27 22:49:52 FkrgTr8u.net
まず
べき乗については
(ab)^c=a^cb^c
a^(bc)=(a^b)^c
のようなことが成り立つべきと認識している人々にとっては
べき乗なのだけど
成り立たなくてもかまへんと認識している人々にとってこれは
かまへん乗なのだよ

わかるかな~?わからねーだろーなー
いえーいい

896:132人目の素数さん
20/02/28 12:22:21 2TOpXlWn.net
まずもって疑問があるからここに書いておくが、何故
「○○に挨拶しないでよ。」
という非難の声を私が聞かなければならないのか?

○○は数学者。何故私は未解決問題を解決する研究を行う際に
証明が可能かどうかも分からないのにも関わらず、知らない数学者に
どう挨拶をすればいいのか?

私に挨拶しないで、けしからんと意味不明に避難する人間は
頭がおかしい。

897:132人目の素数さん
20/02/28 12:39:44 2TOpXlWn.net
>>858 訂正
×避難する
〇非難

898:132人目の素数さん
20/02/28 12:44:10 2TOpXlWn.net
未解決問題を解決した人間を意味不明に誹謗する人間が毎日のように
出没する理由が分からない

899:132人目の素数さん
20/02/28 13:15:11 YdsNVxzD.net
こんなとこで発表してちゃ信用されないわな

900:132人目の素数さん
20/02/28 13:25:39 2TOpXlWn.net
こんなところで発表したとしても、証明を公開しているわけだから
それをもとに評価してもらわないと

901:132人目の素数さん
20/02/28 13:32:35 qAIEdPjh.net
以前は2チャンで未解決問題が解決されたことがあるという話をどこかで聞いた記憶がある。

902:132人目の素数さん
20/02/28 13:36:17 6+sDQgwJ.net
本気ならpolymathみたいに論文にまとめなきゃ

903:132人目の素数さん
20/02/28 13:40:52 QZr5uour.net
>>863
>2チャンで未解決問題が解決された
リマン予想だったかな

904:132人目の素数さん
20/02/28 13:42:54 oDNayJvd.net
>>861
つーか
デタラメな証明だしな

905:132人目の素数さん
20/02/28 14:01:05 2OeijRyy.net
   

【数学】 今年の東大の入試問題簡単すぎw これ解けない人っているの……?
スレリンク(news板)
    

906:132人目の素数さん
20/02/28 14:08:30 2TOpXlWn.net
>>863-864
【未解決問題】奇数の完全数が存在しないことの証明6
スレリンク(math板:484番)

907:132人目の素数さん
20/02/28 14:11:30 +BoqDQ44.net
アメリカの株のセンチメントの悪化が1万年に1度の発生確率って本当ですか?

URLリンク(imgur.com)

908:132人目の素数さん
20/02/28 14:35:53 8wRCxnQM.net
連続と離散を統一した
URLリンク(x0000.net)

909:132人目の素数さん
20/02/28 14:52:54 qAIEdPjh.net
>>866
客観的に昨日書いた証明を見直しても、その証明には多くのおかしな書き方があった。

>>864
改善出来るから、そうする。

910:132人目の素数さん
20/02/28 15:49:32 qAIEdPjh.net
>>857
指数法則といった計算していれば嫌でも身につくネタを出すなら、
特殊関数や偏微分方程式などのようなもっとマトモなネタを出せる筈。

911:132人目の素数さん
20/02/28 22:49:27 oDNayJvd.net
>>871
証明を書く能力が無いってことだよ
自覚していないところが痛い

912:132人目の素数さん
20/02/29 02:16:52.81 9oSnzkJC.net
>>873
あの証明には、独自で開発した未公表の研究結果が含まれている。
マトモに書いたら長くなる。
証明の途中に表れる突飛な関数は一体どこから出て来たのかとかいったような、
既存の超越性の証明には違和感があると感じられる位でないとダメ。

913:132人目の素数さん
20/02/29 02:38:42 nQsJxXGn.net
>>874
丸でダメ

914:132人目の素数さん
20/02/29 02:46:10 9oSnzkJC.net
>>875
超越性の証明を見たことがあれば、そういった違和感を感じてもおかしくないと思うけどね。

915:イナ
20/02/29 02:57:31.90 Bn4PpVB4.net
>>796
>>857松鶴家千とせさん。

916:132人目の素数さん
20/02/29 03:08:31 nQsJxXGn.net
>>876
そういうものではない
丸でダメ

917:132人目の素数さん
20/02/29 03:19:10 9oSnzkJC.net
>>878
πに収束する実数の代数的数の列は無限に存在する。
同じく、πに収束する代数的無理数の列も無限に存在する。

918:132人目の素数さん
20/02/29 03:51:25.76 nQsJxXGn.net
>>852
>よって、平面 R^2 上で、L(c) と (L_1)(c) のどちらか片方の直線から他の片方の直線へと反時計回りに回転させて
>測ったときの角の大きさと、L(c) と (L_2)(c) のどちらか片方の直線から他の片方の直線へと反時計回りに回転させて
>測ったときの角の大ささとはどちらも π^2/c=(π/c)π に等しくなる。
L(c)の偏角がπ^2/c
L_1(c)のが(d-1)π
L_2(c)のが(d'+1)π
(d-1)πと(d'+1)πの平均がπ^2/cというだけで
L(c)とL_1(c)およびL(c)とL_2(c)のなす角がπ^2/cとは噴飯
こんなバカなことしか書いてない

919:132人目の素数さん
20/02/29 03:53:40.60 nQsJxXGn.net
君のやってるのは超越性どころか無理性もまるで無理無理
足し算引き算程度のことだけなんだよ
しかもそれも間違っている

920:132人目の素数さん
20/02/29 03:57:24 TwJ55z/X.net
>>827
「ついでに」

 f(θ) = (2+cosθ)θ - 3sinθ,
とおくと
 f '(θ) = 2sinθ{tan(θ/2) - (θ/2)} > 0,
∴ f(θ) > f(0) = 0,
∴ H < θ.

g(θ) = sinθ について
 (g ')^2 - gg " = 1,
が成り立つから
 dG/dθ = {g/(g ')^(1/3)} '
 = {3(g ')^2 - gg "}/{3(g ')^(4/3)}
 = {(g ')^2 + (g ')^2 + 1}/{3(g ')^(4/3)}
 > 1    (AM-GM)
∴ G > θ.

>>856 の方も同様。

921:132人目の素数さん
20/02/29 04:05:50 9oSnzkJC.net
>>881
>足し算引き算程度のことだけなんだよ
それで証明出来るようにするために、独自で開発した研究をしている。
積分で超越性や無理性をする際に定義される関数が一体どこから出て来たのかとか不思議に思ったことないのか?

922:132人目の素数さん
20/02/29 04:08:02 nQsJxXGn.net
ついでに言えば代数的数cを取るのも無意味
前半でcの代数性は使っておらず
後半でも全く関係ない
>>852
>が成り立つことになり、lim_{c→π}(L(c)) と lim_{c→π}( (L_1)(c) ) のなす角の片方と、
>lim_{c→π}(L(c)) と lim_{c→π}( (L_2)(c) ) のなす角の片方とはどちらも 1π か0に収束し、
>(超越数)×π の形で表されないことになり矛盾が生じる。
c→πでπ/cが超越数ということにしたかったのだろうが
超越数の極限が超越数とは言えないのだよ
π^2/cの極限がπでも0でも全く問題ない

923:132人目の素数さん
20/02/29 04:08:59 nQsJxXGn.net
>>883
あの程度のことしか書けない(しかも間違っている)君には無理

924:132人目の素数さん
20/02/29 04:11:39 nQsJxXGn.net
君の書いた証明
2つ読んで
2つとも基本的すぎるところで全くのウソ
それに気が付かないで無駄なことを書いているだけ
ちゃんと数学を勉強しようよ
何かしたいならそれからだよ

925:132人目の素数さん
20/02/29 04:59:37 9oSnzkJC.net
>>886
例えば、飛躍しまくるけど、e+π の無理性だけやってみようか。

π+e を有理数とする。複素平面C上で考える。
π+e は有理数としているから、7π/4<π+e<2π から
e^{(π+e)i} は代数的数である。加法群Cから加法群 R^2 への
写像 f:C→R^2 a+bi→(a,b) は加法+の二項演算について同型写像となるから、
2つの加法群C、R^2 は加法+について同型である。
加法定理と 7π/4<π+e<2π から sin(π+e)=-sin(e) は代数的無理数だから、
実軸に関する対称性から、sin(π-e)=sin(e) は代数的無理数である。
π+e は有理数としているから、eの無理性から、π-e は無理数である。
故に、sin(π-e)=sin(e) は有理数である。
しかし、これは sin(e) が代数的無理数であることに反し矛盾する。
故に、背理法により、π+e は無理数である。
同様にして考えれば、π-e も無理数であることが示される。

926:132人目の素数さん
20/02/29 05:05:08 9oSnzkJC.net
>>885
やろうとしているのは、>>886のようなこと。

927:132人目の素数さん
20/02/29 05:23:20 9oSnzkJC.net
>>887の 7π/4<π+e<2π は 11π/6<π+e<2π。

928:132人目の素数さん
20/02/29 05:26:40 nQsJxXGn.net
>>887
>7π/4<π+e<2π から sin(π+e)=-sin(e) は代数的無理数
代数的無理数という用語はないが無理数という意図だね?
e^{(π+e)i}が代数的数であることからsin(π+e)が無理数はなぜ言える?
7π/4<a<2πである有理数aについてsin(a)が無理数となることを証明していないのでは?あるいはこれは別途証明してあるとか?いずれにせよ証明見せて

>


929:π-e は無理数である。 >故に、sin(π-e)=sin(e) は有理数である。 なぜ?証明して



930:132人目の素数さん
20/02/29 05:31:21 nQsJxXGn.net
>>887
>π+e は有理数としているから、7π/4<π+e<2π から
>e^{(π+e)i} は代数的数である
ここも変か
7π/4<a<2πの範囲の有理数aについて
e^(ai)が代数的数なのはなぜ?

931:132人目の素数さん
20/02/29 05:33:51 nQsJxXGn.net
>>887
ざっと見ただけでもウソだらけ
足し算引き算程度のことしかやってない
君ホントに馬鹿なのだね

932:132人目の素数さん
20/02/29 05:35:16 9oSnzkJC.net
>>890-891
これこそ独自に開発した研究結果を使っている。

933:132人目の素数さん
20/02/29 05:37:58 9oSnzkJC.net
>>892
>足し算引き算程度のことしかやってない
2次形式とか、代数の結果を使っている。

934:132人目の素数さん
20/02/29 05:47:03 nQsJxXGn.net
>>893
見せてと言いたいところだけど
見てもどうせつまらないウソだらけだろうからイイよ

935:132人目の素数さん
20/02/29 05:49:58 9oSnzkJC.net
>>895
まあ、お前さんは昔の本を読めないだろうしな。

936:132人目の素数さん
20/02/29 05:51:53 nQsJxXGn.net
>>893
>これこそ独自に開発した研究結果を使っている。
e^i=cos1+isin1が代数的数だと証明たり
sin(無理数)が有理数だと証明したりしているのねw
君は途轍もない馬鹿だと証明しているわけだ

937:132人目の素数さん
20/02/29 05:53:42 nQsJxXGn.net
>>896
下らないものを読む気にならないからイイよ

938:132人目の素数さん
20/02/29 05:54:36 nQsJxXGn.net
馬鹿に馬鹿と認識させようとする馬鹿が俺かw

939:132人目の素数さん
20/02/29 05:57:57 9oSnzkJC.net
>>897
>>これこそ独自に開発した研究結果を使っている。
>e^i=cos1+isin1が代数的数だと証明(し)たり
>sin(無理数)が有理数だと証明したりしているのねw
リンデマン・ワイエルシュトラスの定理から、e^i=cos1+isin1 は超越数だろ。

940:132人目の素数さん
20/02/29 07:43:52.81 9oSnzkJC.net
>>887は取り消し。
π+e を有理数とする。
π+e は有理数としているから、35/<π+e<6 から e^{(π+e)πi} は代数的数である。
よって、35/6<π+e<6 から sin((π+e)π) は代数的無理数である。
同様に、1/3<π-e<1/2 から、sin((π-e)π) は代数的無理数である。
また、π+e は有理数としているから、eの無理性から、π-e は無理数である。
故に、1/3<π-e<1/2 から、sin((π-e)π) は有理数である。
しかし、これは sin((π-e)π) が代数的無理数であることに反し矛盾する。
故に、背理法により、π+e は無理数である。
同様にして考えれば、π-e も無理数であることが示される。

941:132人目の素数さん
20/02/29 08:08:36.57 nQsJxXGn.net
>>901
丸でダメ

942:132人目の素数さん
20/02/29 08:09:01.67 BDBSLWpu.net
原点oを通り実軸とのなす角がπ/6の直線ℓがある。
点A(√3+2i)を直線ℓに関して対象移動した点Bを表す複素数を求めよ。

点と直線の距離の公式と、直線ℓの傾き1/√3と直線ABの傾きが直交するで求めました。
しかし、教科書のヒントに「まず、点Aを原点のまわりに-π/6だけ回転する。」とありました。
そのほかの求め方があるのですか?先生、ご教示願えないですか?

943:132人目の素数さん
20/02/29 08:13:56.95 9oSnzkJC.net
>>902
まあな。でも、>>901が本当は正しくなる裏付けやその意味は分からんだろう。
超越性や無理性「だけ」に興味がある訳ではないんで。

944:132人目の素数さん
20/02/29 08:17:27.65 nQsJxXGn.net
>>904
どう言いつくろってもウソでは何の価値もない

945:132人目の素数さん
20/02/29 08:23:05.17 9oSnzkJC.net
>>905
>>901が実は正しくなる裏付けやその意味を知っている人はいるよ。
5チャンのレスで、それを知らない筈の人が何で知っているのかと疑問に思ったことがある。

946:132人目の素数さん
20/02/29 12:36:10.86 6FLLYCQY.net
>>862
時間は有限なんだから
ある程度の期待がないとダメさ
暇な人の反応で期待が高まればだけど
良い反応ないじゃん

947:132人目の素数さん
20/02/29 12:47:17 vwJKuj+c.net
>>887
なんで専用スレでやらんの?

948:132人目の素数さん
20/02/29 12:47:58 9oSnzkJC.net
>>907
恐らく、今までの人は既存の超越数論を基に判断を下しているのであろう。

949:132人目の素数さん
20/02/29 12:53:34 vwJKuj+c.net
>>901
違うよ。
証明が素人丸出しなので読む気にならないだけ。
>>901よんだら同様にしてから全然ダメだし。
こんなしょほてきなミスを書いてて指に違和感走らない程度の奴相手にされない。

950:132人目の素数さん
20/02/29 12:56:48.40 9oSnzkJC.net
>>908
はじめはそうすることにしてそのようにしたけど、
何故か>>873と今日の>>875の ID:nQsJxXGn がその後もしつこく付きまとって来た。
あとは成り行き上のレスのやり取りをしてしまった。

951:132人目の素数さん
20/02/29 13:03:34 9oSnzkJC.net
>>910
>>901に至るまでには、150行から200行以上の行の独自で開発したことの飛躍がある。

952:132人目の素数さん
20/02/29 13:08:46 fSHRQCgW.net
>>901
のミスはそんな背景関係ない。
こんな程度の文章で書いてて自分でおかしいと思えないのは根本的に数学力そのものの欠如。

953:132人目の素数さん
20/02/29 13:12:22 9oSnzkJC.net
>>913
まあ、>>901は証明の体裁をなしていないから、おかしいと思われて当然でしょう。

954:132人目の素数さん
20/02/29 13:21:17 QsZvN7bM.net
>>914
4行目でおかしいからな。

955:132人目の素数さん
20/02/29 13:24:47 9oSnzkJC.net
>>915
そこは論理を飛躍し過ぎた部分になっている。

956:132人目の素数さん
20/02/29 13:35:17 09yK1b99.net
>>916
そういう言い訳がみっともない。
書いてある事がおかしい。
書きながらちゃんと頭の中で理由考えながら書いてないだろ?

sin((π+e)π) は(sin(有理数)πだから)代数的無理数である。

って( )の中を例え書かなくても頭の中で反芻しながら数学してれば次の行

sin((π-e)π) は(sin(有理数)πだから)代数的無理数である。

と唱えたときに、あれ?π-eが有理数ってなんで言えるんだっけってで気付けるハズ。
そういう数学を勉強していく上での極基本的な能力が決定的に欠如してる。

957:132人目の素数さん
20/02/29 13:44:00 WaQuZQV+.net
>>822の証明は正しいと考えられるが、どこが間違っているのだろう?

>>907
日本語は7人、英語は32人がダウンロードしている
最新を公開した後にも「数学賞だ。」と言う人の声は聞こえた

数学的に完全に正しいからね02/04日の論文は

958:132人目の素数さん
20/02/29 14:08:31 WaQuZQV+.net
>>918 訂正
と思ったが、逆の仮定も成り立つから(ry

959:132人目の素数さん
20/02/29 14:32:38 WaQuZQV+.net
>>919 訂正
b+2=2π-(a-2)か

960:132人目の素数さん
20/02/29 15:01:19.38 9oSnzkJC.net
>>917
35/6<π+e<6 から 11π/6<(π+e-4)π<2π
で、sin((π+e)π)=sin((π+e-4)π) は代数的無理数である。
また、1とiは絶対値が1の代数的数である。
よって、π/3<(π-e)π<π/2 から、
2π-11π/6=π/2-π/3=π/6 なることに着目すると、
sin((π-e)π) は代数的無理数になる。

961:132人目の素数さん
20/02/29 15:04:49.02 9oSnzkJC.net
まあ、この話はお開きにしよう。

962:132人目の素数さん
20/02/29 15:05:41.54 GvFN5jaO.net
>>921
まだわからんの?
バカだなぁ

963:132人目の素数さん
20/02/29 15:14:35 9oSnzkJC.net
>>901>>921だが、cos((π-e)π) が代数的無理数になる。

お開き。

964:132人目の素数さん
20/02/29 16:09:25 syis6pKJ.net
こうやって自分のダメなとこからずっと目を背け続けてるからいつまで経っても数学力が上がらないんだよ。

965:132人目の素数さん
20/02/29 16:32:46 9oSnzkJC.net
>>925
論理は飛躍するけど、>>901の訂正だけ書く。

π+e を有理数とする。 仮定から、π+e は有理数としているから、e^{(e+π)πi} は代数的数となる。
また、35/<π+e<6 から 11π/6<(π+e-4)π<2π である。
よって、e^{(e+π)πi} の虚部 sin((π+e)π)=sin((π+e-4)π) は代数的無理数である。
1とiは絶対値が1の代数的数だから、π/3<(π-e)π<π/2 から、
2π-11π/6=π/2-π/3=π/6 なることに着目すると、cos((π-e)π) は代数的無理数である。
ところで仮定から、π+e は有理数としているから、eの無理性から、π-e は無理数である。
故に、1/3<π-e<1/2 から、sin((π-e)π) は有理数である。
π+eを有理数と仮定したこととeの無理性から π-e は無理数だから、cos((π-e)π) は有理数か超越数となる。
しかし、これは cos((π-e)π) が代数的無理数であることに反し矛盾する。
故に、背理法により、π+e は無理数である。
同様にして考えれば、π-e も無理数であることが示される。

966:132人目の素数さん
20/02/29 16:34:30 nQsJxXGn.net
まあ馬鹿なかまってちゃんなのだろうな

967:132人目の素数さん
20/02/29 16:40:49 9oSnzkJC.net
>>925
>>926の途中の
>ところで仮定から、π+e は有理数としているから、eの無理性から、π-e は無理数である。
>故に、1/3<π-e<1/2 から、sin((π-e)π) は有理数である。
は本来は不要。もし、それも読むなら、その下の
>π+eを有理数と仮定したこととeの無理性から π-e は無理数だから、cos((π-e)π) は有理数か超越数となる。
の行は
>ところで π+e を有理数と仮定したこととeの無理性から π-e は無理数だから、cos((π-e)π) は有理数となる。
に変えて読んでほしい。

968:132人目の素数さん
20/02/29 16:44:16 9oSnzkJC.net
>>927
お前さんが鏡映変換に疎い可能性があるということは推測される。

969:132人目の素数さん
20/02/29 18:34:42 YaOBpKsH.net
質問なのですが、
私は数学のできないもぐりのコーダです。
プログラムで3角形を書いたのですが、きれいに回らないのです。
そこで、三角形の中心ってどうやって求めるのですか?


URLリンク(light.dotup.org)

970:132人目の素数さん
20/02/29 18:50:32 /Rm9sdU+.net
>>930
あなたのいう中心というのはあなたの考える「きれいに回る」ときの中心ってことなんだろうけど、
あなたの考える「きれいに回る」というのはどういう状態のことなのか
そのgifでもちゃんと回ってはいると思うんだけど

971:132人目の素数さん
20/02/29 19:06:54 YaOBpKsH.net
>>931
返信ありがとう。
自分の考える綺麗に回るとは、回転がどの角度であっても、中心は中点を維持し続ける。という感じです。
重心ではちょっと違う気がしました。

もうちょっと書くと、三角形には原点がありますが、その相対的な原点が画像の中心の数ドット先で回転しているのです。
重心はたしか、三角形の垂線の2:3だか1:2だかの所にありますが、それは中心では無いように感じます。
中心に至る垂線の比が解れば、簡単なのですが解らないのです。

よろしくお願いいたします。

972:132人目の素数さん
20/02/29 19:08:39 YaOBpKsH.net
ちなみに、画像の一辺は100で100分率でマップできるようにしてあります。

973:132人目の素数さん
20/02/29 19:51:07 GgyIebsL.net
>>932
外心中心に回してみたら?
どこを中心に回すと一番綺麗に見えるかって心理学的な面が大きくて色々試してみるしかないのではないかと。

974:132人目の素数さん
20/02/29 20:15:15 fzZUTAyJ.net
三角形の重心は、垂線ではなく
3本の中線(頂点~対辺の中点)の交点。
座標を求めたいなら、3つの頂点の座標の
幾何平均(足して3で割る)を求めればよい。

図形の重心を常に原点に置きたいならば、
描画前に重心の座標を求めて
3点の座標から引き算しておけばよい。

回転を表現するには、全てのコマの座標を
あらかじめ計算しておく方法のほか、
回転行列を用いてそのつど計算する
方法もある。

( ・∀・)< がんばー

975:132人目の素数さん
20/02/29 20:18:22 YaOBpKsH.net
>>934
返信ありがとう。
外心の証明見るんだけど、さっぱりわからないです。
1辺に定数をマップして答えを出すような証明に出会わなくてきついです。
角度や比を見ても、実数にマップする方法が遠いです。うぅ。

うーん。こまったなぁ。

976:132人目の素数さん
20/02/29 20:26:41 YaOBpKsH.net
とりあえず、手を動かしてみます。
お付き合いいただきありがとうございました。

977:挑発吉川晃司
20/02/29 20:27:47 BDBSLWpu.net
>>903は、
直線ℓを実軸に持って行って、共役な複素数、
そしてπ/6戻してやるでよかったんだろ?
そのぐらいもわからないで数学者気取ってここにいんじゃねえよ!低脳w

978:132人目の素数さん
20/02/29 20:52:43.90 YLtDmJgk.net
>>932
> 回転がどの角度であっても、中心は中点を維持し続ける
中点ってなんのこと?
> 三角形には原点がありますが、
三角形の原点とは?
> その相対的な原点が画像の中心の数ドット先で回転しているのです
相対的って何に対して?

979:132人目の素数さん
20/02/29 22:04:30 YaOBpKsH.net
どうも、三角形です。
手を動かしてみた結果、少し歪みが減りました。
これを結果として今回のこの話は終わりです。
ありがとうございました。

URLリンク(light.dotup.org)

980:132人目の素数さん
20/02/29 22:12:19 YaOBpKsH.net
オマケ。

>>939
中点とは真ん中の点です。
三角形の原点とは、図を引くときにあなたは相対位置で作図するのですか?
相対的とは、三角形の形と大きさが決まっているときに実座標にマップするための起点です。

981:132人目の素数さん
20/02/29 22:32:50 YLtDmJgk.net
>>941
すまないがもう全く何を言っているのかわからない
真ん中の点って一体どういう定義で真ん中と言っているのか
共通言語を使わないと通じないと思うよ

982:132人目の素数さん
20/02/29 22:34:22 +/8mGAjS


983:.net



984:132人目の素数さん
20/02/29 23:04:10 /DxgpTSj.net
>>940-941
回してるの正三角形に近いから分かりにくい。
どんな点で回すといいのか実験するならもっと歪んだ三角形でなる方がいいのでは?
で重心、内心、外心と色々試してみると良さげ。

985:132人目の素数さん
20/03/01 01:02:46 DfKXBmiJ.net
次は本スレスレリンク(math板)に合流な
重複継続すんなよ

986:132人目の素数さん
20/03/01 01:33:21 i7iXTK9i.net
馬鹿は専用スレな

987:132人目の素数さん
20/03/01 01:33:59 i7iXTK9i.net
>>941
ホボ意味不明

988:132人目の素数さん
20/03/01 04:45:10.50 03K2onst.net
>>938
>直線ℓを実軸に持って行って、共役な複素数、
>そしてπ/6戻してやるでよかったんだろ?
その求め方では>>903
>点と直線の距離の公式と、直線ℓの傾き1/√3と直線ABの傾きが直交するで求めました。
>しかし、教科書のヒントに「まず、点Aを原点のまわりに-π/6だけ回転する。」とありました。
>そのほかの求め方があるのですか?
とあるように教科書のヒントの求め方をしていて、>>903に提示された
2つの求め方とは違う他の求め方をしていないから、ダメなんではないか。
一応、次の方法はある。
点 A(√3+2i) の偏角を θ_1、点Bの偏角を θ_2 とする。
原点oと点 A(√3+2i) 間の距離は点 A(√3+2i) の絶対値 √7 に等しいから、点Aの極形式は √7e^{iθ_1} である。
問題文の点Bの定義から、原点oと点B間の距離は点oと点 A(√3+2i) 間の距離 √7 に等しいから、点Bの極形式は √7e^{iθ_2} である。
仮定から、点Aと点Bは点oを通り実軸とのなす角がπ/6の直線ℓについて対称だから、
e^{i((θ_1+θ_2)/2)}=e^{πi/6} が成り立ち、e^{i(θ_1+θ_2)}=e^{πi/3} となる。
θ_1 の定義とオイラーの公式から、e^{i(θ_1}=cos(θ_1)+i・sin(θ_1)=√(3/7)+i・2/√7=(√3+2i)/(√7) となる。
同様にオイラーの公式から、e^{πi/3}=cos(π/3)+i・sin(π/3)=(1+i√3)/2 である。
よって、e^{iθ_2)} を計算すると、
e^{iθ_2)}=(e^{πi/3})/(e^{i(θ_1})=(√7/2)×(1+i√3)/(√3+2i)=(√7/2)×((1+i√3)(√3-2i))/7=(√7/2)×(3√3+i)/7
となって、e^{iθ_2)}=(√7/2)×(3√3+i)/7 を点Bの極形式 √7e^{iθ_2} に代入すれば、点Bは、(3√3+i)/2 と求まる。


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch