現代数学の系譜 工学物理雑談 古典ガロア理論も読む46at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 - 暇つぶし2ch75:. [0,1]上の有理数で不連続、無理数で連続な関数を1つ示せ Q3. [0,1]上の有理数で不連続、無理数で微分可能(当然連続)な関数を1つ示せ



76:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 09:29:51.14 cTg/FCp5.net
>>67
「ぷふ」さん、どうも。スレ主です。
全面同意。同じことを、通俗的なたとえ話で、>>63に書いた(^^

77:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 09:31:23.48 cTg/FCp5.net
>>68
分からない問題はここに書いてね436
スレリンク(math板)

78:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 09:35:22.72 cTg/FCp5.net
>>62
哀れな素人さん、どうも。スレ主です。
>>ギャハハハハハハ!!!
>>さすが数学を知らない工学馬鹿、正真正銘のidiotだな
>
>↑これはアホ豚の一石である(笑
情報ありがとうございます(^^
これからもよろしく
まあ、ピエロは常人と違うサイコパス
彼はすぐ、我を忘れて本性を現すんだな (^^

79:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 09:42:35.46 cTg/FCp5.net
>>70 自己レス
これ良いな(^^
これからは、つまらん出題は、「分からない問題はここに書いてね」に投げよう!!(^^

80:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 09:55:26.92 cTg/FCp5.net
>>67
横レスで悪いが
この>>67が分らないようじゃ、時枝記事を論じる資格なしだな~(^^

81:132人目の素数さん
17/11/12 10:30:01.50 8hZGWxI0.net
>>67
URLリンク(xorshammer.com)
ぷ君は英語はできるよな?まずはきちんと読み返してきてくれ。
> fを選ぶ(関数空間の中から)
> x0を選ぶ(選び方はどうでもいいよ)
これは『fとx0は任意に与えられたものとする』ということでよろしいな?
これが意味することは、fとx0は確率変数ではない、ということである。
明らかにx0∈[0, 1]を一様分布で選ぶとする 元 問 題 と は 異 な る のである。
> In Step 2, choose x with uniform probability from [0,1]
ぷ君が 問 題 を 改 変 しているのは明らかである。
> fを選ぶ(関数空間の中から)
> x0を選ぶ(選び方はどうでもいいよ)
> x≠x0以外のf(x)を開示(この時点でf(x0)のみが確率変数)
ぷ君の言うf(x0)は確率変数ではない。
ぷ君の独自設定では、f も x0 も 確 率 変 数 で は な い からである。
ぷ君は『自分が分からないもの=確率変数』だと思っているだろ?
違 い ま す 。
fもx0も事前に与えられて(固定されて)いるのでf(x0)は確定している。
ぷ君に知らされていないだけで、f(x0)は確定しているのである。
f(x0)はRの元のどれか、1か2かπか別のどれか、とにかくある1つのRの元である。
fもx0も確率変数でない以上、f(x0)は確率変数ではない。
もしこの簡単な理屈が分からなければ 分かりません と言え。
さらに言えばオマエの独自設定では確率も糞もない。
なぜなら確率空間が設定されていないからであるw
ぷ君がきちんと理解したか、確認問題を出させてもらう:
[確認問題]
前スレのぷ君の『x=0戦略』を考える。
全事象Ω={1}、P(1)=1という自明な確率空間を取ることが出来る。
すなわちこの問題ではxは確率変数とみなせる。
fもgも任意であり、事前に与えられているとする。
このときf(0)=g(0)となる確率は?
※この問題で回答を間違えたらもう後はないw
(ぷ君以外は黙っていてくださいね)

82:132人目の素数さん
17/11/12 10:37:08.42 tybpW7Vy.net
>>70
ん?私は当然答えを知っているが?
>>72
>つまらん出題
もしかして、答えが分からないのかな?
ということで
>>1への問題(大学1年程度)
Q1. [0,1]上至るところで不連続な関数を1つ示せ
Q2. [0,1]上の有理数で不連続、無理数で連続な関数を1つ示せ
Q3. [0,1]上の有理数で不連続、無理数で微分可能(当然連続)な関数を1つ示せ

83:132人目の素数さん
17/11/12 10:43:54.65 tybpW7Vy.net
>>75
>>1へのヒント
無理数上での値は定数、としてよい

84:132人目の素数さん
17/11/12 10:53:57.16 tybpW7Vy.net
>>75
Q1、Q2は検索すれば見つかる
Q3は、とある有名なテクストに載っている
ま、どうせ考えても思いつかないんだから、
必死でサーチするんだね

85:132人目の素数さん
17/11/12 10:55:22.03 8hZGWxI0.net
>>74
> [確認問題]
> 前スレのぷ君の『x=0戦略』を考える。
> 全事象Ω={1}、P(1)=1という自明な確率空間を取ることが出来る。
{1}と書いてしまったが、{0}とする。この標本をx0とする。
(x0(1)=0なる可測関数を考えてもよいが回りくどいので訂正しておく)

86:132人目の素数さん
17/11/12 16:15:43.03 YCWXE/2C.net
スレ主もぷも�


87:ゥ説は雄弁に述べるが問題を出されると弱いなw



88:132人目の素数さん
17/11/12 16:24:26.61 tybpW7Vy.net
>>79
だね。
>>1への問題(大学1年程度)
Q1. [0,1]上至るところで不連続な関数を1つ示せ
Q2. [0,1]上の有理数で不連続、無理数で連続な関数を1つ示せ
Q3. [0,1]上の有理数で不連続、無理数で微分可能(当然連続)な関数を1つ示せ
>>1は軽率だから、てっきり
「有理数で不連続、無理数で連続? そんなことあるわけねぇ!」
と吠えるかとおもったがw

89:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 16:33:36.50 cTg/FCp5.net
>>80
分からない問題はここに書いてね436
スレリンク(math板:687番) 問題
スレリンク(math板:691番) A1
スレリンク(math板:709番) A2

90:132人目の素数さん
17/11/12 16:38:19.14 tybpW7Vy.net
>>81
これ大学数学の常識なんだけどな

91:132人目の素数さん
17/11/12 16:44:05.55 tybpW7Vy.net
Q1. [0,1]上至るところで不連続な関数を1つ示せ
A1. ディリクレの関数
   有理数で1 無理数で0
URLリンク(ja.wikipedia.org)
Q2. [0,1]上の有理数で不連続、無理数で連続な関数を1つ示せ
A2. トマエの関数
   有理数rが既約分数p/qで表されるとき、1/q 無理数で0
URLリンク(ja.wikipedia.org)
で、Q3の答えはまだ見つからないのかい?(ニヤリ)

92:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 16:48:48.87 cTg/FCp5.net
>>63 関連
ピエロくん、これだれの発言かな?(^^
この発言正しいよ。
”何回も試行する場合に変化するのはfではなくx”
つまり、xは変化しても、fは変化しないし、代表f’も変化しない!(^^
サイコパスは、忘れているかな?(^^
45 スレリンク(math板)
(抜粋)
738 名前:132人目の素数さん[sage] 投稿日:2017/11/11(土) 07:52:57.35 ID:9+uC0Qtj [6/26]
>>716
>必要なのはある値(この場合x=0)におけるf(0)を予想するということ
x=0だと固定したがるのが馬鹿丸出し
「必要なのはある値xにおけるf(x)を予想するということ」
でいい。
何回も試行する場合に変化するのはfではなくx
(引用終り)

93:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 16:50:12.88 cTg/FCp5.net
>>83
しらんな
「分からない問題はここに書いてね」を、まてば~(^^

94:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 16:51:40.46 cTg/FCp5.net
>>82
なるほど、必死の話題逸らしか(^^

95:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 17:04:14.31 cTg/FCp5.net
>>61 補足
>簡単な話で、”choose x in Step 2 with uniform probability from [ 0,1 ]”だから、 Gameを、[ 0,1 ]の0から初めて1に達するまで、続ける
>x=0のときに、Bobのf(x)が分って、同値類が分って、代表f'(x)が決まる。あとを続ければ、Δf = f(x)-f'(x) は、”定義の通り” [ 0,1 ]では有限個しか不一致がないんだ
1)Δf = f(x)-f'(x) の関連で、Bobのf(x)と代表f'(x)とが一致するとき(当りのとき)は値1、不致のとき(当りのとき)は値0、となる関数Δ’fを考える
2)関数Δ’fを、ルベーグの意味で、xについて区間[ 0,1 ]で積分する
3)不一致が、上記区間内の測度0ゆえ、積分値は1
4)このことを、通俗的に書いたものが>>63であるにすぎない(落ちこぼれは英語が読めないらしい(^^ )
補足終り
以上

96:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 17:07:38.36 cTg/FCp5.net
>>84 訂正
45 スレリンク(math板)
 ↓
45 スレリンク(math板:738番)

97:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 17:09:17.12 cTg/FCp5.net
>>87 訂正
1)Δf = f(x)-f'(x) の関連で、Bobのf(x)と代表f'(x)とが一致するとき(当りのとき)は値1、不致のとき(当りのとき)は値0、となる関数Δ’fを考える
 ↓
1)Δf = f(x)-f'(x) の関連で、Bobのf(x)と代表f'(x)とが一致するとき(当りのとき)は値1、不致のとき(当らないとき)は値0、となる関数Δ’fを考える

98:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 17:09:59.39 cTg/FCp5.net
不致→不一致か(^^

99:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 17:29:22.65 cTg/FCp5.net
>>83
>Q3. [0,1]上の有理数で不連続、無理数で微分可能(当然連続)な関数を1つ示せ
>これ大学数学の常識なんだけどな
おっちゃん、出番だよ~(^^

100:132人目の素数さん
17/11/12 17:40:29.04 hePUuc7P.net
>>87
> 4)このことを、通俗的に書いたものが>>63であるにすぎない
通俗的ですか。そういう言い訳は聞いたこともないくらい苦しく痛々しい。
>>63
> 1.x=0のときに、Bobのf(x)が分ってから、f(x)と有限個のみ違うg(x)を作る
> 2.g(x)から、有限個のみ違うf’(x)を作る。これを代表とする
f(x)が分かってから、ではありませんけど?
URLリンク(xorshammer.com)
をよく読みましょうよ。
> Using the axiom of choice, pick a representative from each equivalence class.
これと
> Bob reveals {(x_0, f(x_0)) | x_0 ≠ x}
これ。どちらが先ですかねー?よく読んで答えましょうねー。
> 4.つまりは、数学的には、Bobのf(x)をカンニングして代表f’(x)を作っているってことだ
> 5.だったら、当たるのは当たり前でしょ(^^
結論出す前に問題を理解するほうが先ですねー。

101:132人目の素数さん
17/11/12 17:48:53.87 bcdob+HV.net
>>69
どうもここにはあなたしか確率のことを理解できてる人はいないみたい

102:132人目の素数さん
17/11/12 17:53:10.53 bcdob+HV.net
>>74
全く意味がないことばかり書くのね
別にx0が毎回変わってもいいよ
f(x0)以外が開示されているということが重要
x0が毎回変わろうが変わるまいがf(x0)=g(


103:x0)になる確率は0



104:132人目の素数さん
17/11/12 17:57:50.63 hePUuc7P.net
>>94
> 全く意味がないことばかり書くのね
> 別にx0が毎回変わってもいいよ
> f(x0)以外が開示されているということが重要
> x0が毎回変わろうが変わるまいがf(x0)=g(x0)になる確率は0
予想どおりの回答をありがとう。不正解ですw
なんで不正解か分かりますか?
>>74, >>78
> [確認問題]
> 前スレのぷ君の『x=0戦略』を考える。
> 全事象Ω={0}、P(0)=1という自明な確率空間を取ることが出来る。
> すなわちこの問題ではxは確率変数とみなせる。
> fもgも任意であり、事前に与えられているとする。
> このときf(0)=g(0)となる確率は?

105:132人目の素数さん
17/11/12 18:00:07.47 YCWXE/2C.net
スレ主自演下手過ぎw

106:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 18:08:52.74 cTg/FCp5.net
>>93
>どうもここにはあなたしか確率のことを理解できてる人はいないみたい
「ぷふ」さん、どうも。スレ主です。
いや、私もそんなに確率論は詳しくないが
ともかく、落ちこぼれ素人衆には、困ったものです(^^

107:132人目の素数さん
17/11/12 18:16:40.09 YCWXE/2C.net
自分で自分を褒め讃えて楽しい?

108:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 18:18:31.03 cTg/FCp5.net
>>92
>> 1.x=0のときに、Bobのf(x)が分ってから、f(x)と有限個のみ違うg(x)を作る
>> 2.g(x)から、有限個のみ違うf’(x)を作る。これを代表とする
>
>f(x)が分かってから、ではありませんけど?
分かり易く、お話風に書いただけのことで、数学的には同じこと
つまり、それ全ての関数を、事前に同値類に、全て分類するということだが・・
Bobのf(x)が、どの同値類に属するかを判定するためには、Bobのf(x)について無限個(正確には連続無限)のf(x)の値を知る必要がある
それは、どの同値類に属するかを判定する前だろ
だったらさ、Bobのf(x)について無限個(正確には連続無限)のf(x)の値を知って、
それから知ったf(x)について、同値類g(x)たちを作って、代表f’(x)を決めれば数学的には全く同じことだよ!!(^^

109:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 18:19:15.28 cTg/FCp5.net
>>98
そこに救いを求めるかね~(^^

110:132人目の素数さん
17/11/12 18:22:50.12 YCWXE/2C.net
救いは求めてないw
みっともなさに呆れてるだけw

111:132人目の素数さん
17/11/12 18:25:41.86 bcdob+HV.net
>>101


112:132人目の素数さん
17/11/12 18:28:05.11 YCWXE/2C.net
分かり易過ぎるw
見てるこっちが恥ずかしくなるw

113:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 19:05:05.34 cTg/FCp5.net
>>103
そこに救いを求めるかね~(^^

114:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 19:15:16.61 cTg/FCp5.net
>>99 追記
重ねて書いておこう
1.「Bobのf(x)が、どの同値類に属するかを判定するためには、Bobのf(x)について無限個(正確には連続無限)のf(x)の値を知る必要がある
  それは、どの同値類に属するかを判定する前」ってこと
2.この(上記1の)時間の前後は、絶対に変えられない!(^^
3.であれば、「事前に全部の関数を同値類に分類しておくこと」と、「事後的に知ったf(x)について、同値類g(x)たちを作って、代表f’(x)を決めること」と、
  この二つは数学的には同値!!
4.なぜなら、どちらも、Bobのf(x)の公開された無限個(正確には連続無限)のf(x)の値を使っていて、そこがキモだからだよ(^^

115:132人目の素数さん
17/11/12 19:24:47.02 hePUuc7P.net
>>99
> だったらさ、Bobのf(x)について無限個(正確には連続無限)のf(x)の値を知って、
> それから知ったf(x)について、同値類g(x)たちを作って、代表f’(x)を決めれば数学的には全く同じことだよ!!(^^
x=x0以外のf(x)を知ってから代表f'(x)を作ってから、f'(0)を数当ての答えにするわけ?w
それで、君はf(0)=f'(0)が自明だと思ってるの?f(0)≠f'(0)が自明だと思ってるの?

116:132人目の素数さん
17/11/12 19:25:34.82 hePUuc7P.net
すまん書き直し。
>>99
> だったらさ、Bobのf(x)について無限個(正確には連続無限)のf(x)の値を知って、
> それから知ったf(x)について、同値類g(x)たちを作って、代表f’(x)を決めれば数学的には全く同じことだよ!!(^^
x=x0以外のf(x)を知った後、代表f'(x)を作ってから、f'(0)を数当ての答えにするわけ?w
それで、君はf(0)=f'(0)が自明だと思ってるの?f(0)≠f'(0)が自明だと思ってるの?

117:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 19:38:54.44 cTg/FCp5.net
>>107
>x=x0以外のf(x)を知った後、代表f'(x)を作ってから、f'(0)を数当ての答えにするわけ?w
英文では、そう書いてある
なお、ピエロの>>84の発言も同じ趣旨だろうぜ(^^
>それで、君はf(0)=f'(0)が自明だと思ってるの?f(0)≠f'(0)が自明だと思ってるの?
当然、確率としてf(0)≠f'(0)だが
どちらにせよ、そこの1点だけの話だから、>>87の積分値には影響しないぜ(^^

118:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 19:46:23.66 cTg/FCp5.net
>>107
ところで、つまらん話だが
スレ44 スレリンク(math板:29番)
29 名前:132人目の素数さん[sage] 投稿日:2017/11/12(日) 17:42:33.20 ID:hePUuc7P
>>18
> ここでいいかな?
ダメです。下に回答されたし。
(引用終り)
と呼びに行ってくれた
で、
>>93 返信:132人目の素数さん[] 投稿日:2017/11/12(日) 17:48:53.87 ID:bcdob+HV [1/3]
>>69
どうもここにはあなたしか確率のことを理解できてる人はいないみたい
>>102 名前:132人目の素数さん[] 投稿日:2017/11/12(日) 18:25:41.86 ID:bcdob+HV [3/3]
>>101

(引用終り)
という流れだ
だから、呼びかけたID:hePUuc7Pさんが、成りすましかどうか、一番分っているんじゃないかね?(^^

119:132人目の素数さん
17/11/12 19:49:53.89 hePUuc7P.net
>>109
> だから、呼びかけたID:hePUuc7Pさんが、成りすましかどうか、一番分っているんじゃないかね?(^^
率直に言って成りすましとは思わないが瓜二つ。

120:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 19:56:38.57 cTg/FCp5.net
>>107 補足
下記のように、表現を改善したら、受け入れ易いかも(^^
<表現改善前>x=x0以外のf(x)を知った後、代表f'(x)を作ってから、
 ↓
<表現改善後>x=x0以外のf(x)を知った後、代表f'(x)が決ってから、
数学的には、「決まる」も「作る」も同じこと
要するに、Bobのf(x)と有限個しか違わない代表f’(x)を得ることができるという結果は、同じだ

121:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 19:58:07.37 cTg/FCp5.net
>>110
正しいことを言っているからだろ(^^
真理は一つだからね

122:132人目の素数さん
17/11/12 19:58:34.05 hePUuc7P.net
>>108
> 英文では、そう書いてある
書いてませんw
The strategy is as follows: Let ~ be the equivalence relation on functions from R to R defined by f~g
iff for all but finitely many y, f(y) = g(y). Using the axiom of choice, pick a representative from each equivalence class.
※まず同値関係を定義し、各同値類の代表元をpickする。
(つまりこの時点で代表元は選ばれています)
In Step 2, choose x with uniform probability from [0,1].
※Step2で数当てを行うx∈[0,1]が選ばれる
> When, in step 3, Bob reveals {(x_0, f(x_0))|x_0≠x}, you know what equivalence class f is in, because you know its values at all but one point.
> Let g be the representative of that equivalence class that you picked ahead of time.
※Step3でx以外の全ての点x_0におけるf(x_0)が開示される。
 事 前 に 選 ん で お い た 代表元をgとする。
> Now, in step 4, guess that f(x) is equal to g(x).
※Step4でf(x)=g(x)と予想する

正しい順番が分かりましたか?
>>108
> >>107
> >x=x0以外のf(x)を知った後、代表f'(x)を作ってから、f'(0)を数当ての答えにするわけ?w
>
> 英文では、そう書いてある
『英文ではそう書いてある』は真っ赤な嘘。
問題を読めてないことが明らかです。

123:132人目の素数さん
17/11/12 20:27:17.06 bcdob+HV.net
>>110
分からないスレで自作自演するよりは違いは大きいと思うよ

124:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 20:34:43.56 cTg/FCp5.net
>>113
"choose x with uniform probability from [0,1]."だから
(ルベーグの意味で)積分できる
積分できるから、(>>64, >>57より)
「fと上記区間内の測度0の集合上のxで値が異なるだけのg」が意味を持つ
具体的には、>>87に書いたように、
1)Δf = f(x)-f'(x) の関連で、Bobのf(x)と代表f'(x)とが一致するとき(当りのとき)は値1、不一致のとき(当らないとき)は値0、となる関数Δ’fを考える
2)関数Δ’fを、ルベーグの意味で、xについて区間[ 0,1 ]で積分する
3)不一致が、上記区間内の測度0ゆえ、積分値は1
ってこと。積分値が1ってことが、確率1(測度論による確率)ってこと(下記引用>>57に同じ)
前スレ828で「uniform probabilityの意味は?」と聞いたのは、そういう意図だよ
数学的な意味は、それで終り(英文法の問題ではない)!!(^^
<参考>
>>57
→fと上記区間内の測度0の集合上のxで値が異なるだけのgを
 fと同値とする同値関係を定義し同値類の代表元f'をとれば、
 x∈Sについてf(x)=f'(x)となる確率は1 (区間[0,1]上の測度で考える)
(引用終り)

125:132人目の素数さん
17/11/12 20:44:00.19 hePUuc7P.net
>>115
一様分布の測度を今になっておさらいしなくてもいいと思うんですが。
自分のためのメモですか?
貴方は>>108で誤読を犯したわけですが、
>>115はそれを指摘した>>113へのレスになってるんですか?
順番を間違えていたことは認めるんですか?認めないんですか?
まず認めましょうよ。読み間違っていたことは。

126:132人目の素数さん
17/11/12 20:47:46.58 hePUuc7P.net
>>108
> 当然、確率としてf(0)≠f'(0)だが
> どちらにせよ、そこの1点だけの話だから、>>87の積分値には影響しないぜ(^^
何が言いたいのかはっきりしてくれませんか?
[1]
代表元は元の問題通り、Step1で事前に作っておくんですか?
それとも>>108の『英文に書いてある』ように、Step3でf(x)を知ってからf'(x)を作るんですか?
>>108
> >>107
> >x=x0以外のf(x)を知った後、代表f'(x)を作ってから、f'(0)を数当ての答えにするわけ?w
>
> 英文では、そう書いてある
[2]
数当ては確率0で成功するんですか?確率1で成功するんですか?
どちらと考えているのですか?

127:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 21:06:15.94 cTg/FCp5.net
>>116
誤読を犯したわけではなく、あえて数学的に等価な別の手順を示しただけのこと

128:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 21:06:33.83 cTg/FCp5.net
>>117
それは、>>115を読めば分ることだろ?
数学的意味はそれで終りだ。
あとは、それを自然言語でかみ砕いて説明しているだけ
自然言語でかみ砕いた説明と、>>115を併読せよ

129:132人目の素数さん
17/11/12 21:15:21.83 hePUuc7P.net
>>119
きちんと答えてくださいよ
>>108
> 当然、確率としてf(0)≠f'(0)だが
> どちらにせよ、そこの1点だけの話だから、>>87の積分値には影響しないぜ(^^
何が言いたいのかはっきりしてくれませんか?
[1]
代表元は元の問題通り、Step1で事前に作っておくんですか?
それとも>>108の『英文に書いてある』ように、Step3でf(x)を知ってからf'(x)を作るんですか?
>>108
> >>107
> >x=x0以外のf(x)を知った後、代表f'(x)を作ってから、f'(0)を数当ての答えにするわけ?w
>
> 英文では、そう書いてある
[2]
数当ては確率0で成功するんですか?確率1で成功するんですか?
どちらと考えているのですか?

130:132人目の素数さん
17/11/12 21:49:26.62 GGaVEi9w.net
>>74
>全事象Ω={1}、P(1)=1という自明な確率空間を取ることが出来る。
>すなわちこの問題ではxは確率変数とみなせる。

アホだな

131:132人目の素数さん
17/11/12 21:51:38.14 hePUuc7P.net
>>121
ぷ君 はしょっちゅうI


132:Dを変えるんだなw



133:132人目の素数さん
17/11/12 21:57:36.34 hePUuc7P.net
IDをコロコロ変えるぷ君へ(ID:GGaVEi9w=ID:bcdob+HV)
再度言いますが、ぷ君の回答>>94は不正解ですw
>>95
> >>94
> > 全く意味がないことばかり書くのね
> > 別にx0が毎回変わってもいいよ
> > f(x0)以外が開示されているということが重要
> > x0が毎回変わろうが変わるまいがf(x0)=g(x0)になる確率は0
>
> 予想どおりの回答をありがとう。不正解ですw
> なんで不正解か分かりますか?
>
> >>74, >>78
> > [確認問題]
> > 前スレのぷ君の『x=0戦略』を考える。
> > 全事象Ω={0}、P(0)=1という自明な確率空間を取ることが出来る。
> > すなわちこの問題ではxは確率変数とみなせる。
> > fもgも任意であり、事前に与えられているとする。
> > このときf(0)=g(0)となる確率は?

134:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 22:12:10.15 cTg/FCp5.net
>>119 補足
下記の1)2)の二つは、数学的には、同じことを言っているよ
それが理解できていないようだね(^^
くどいが、”Bobのf(x)と代表f'(x)とが一致するとき(当りのとき)は値1、不一致のとき(当らないとき)は値0、となる関数Δ’f”で
これを、”xについて区間[ 0,1 ]で積分する”ことと、”Gameを、[ 0,1 ]の0から初めて1に達するまで、続け” 結果(当り外れ)を得ることとは、数学的に等価!(^^
  記
1)(>>61より)” ”choose x in Step 2 with uniform probability from [ 0,1 ]”だから、 Gameを、[ 0,1 ]の0から初めて1に達するまで、続ける”
  ↑
  ↓
2)(>>115より)”1)Δf = f(x)-f'(x) の関連で、Bobのf(x)と代表f'(x)とが一致するとき(当りのとき)は値1、不一致のとき(当らないとき)は値0、となる関数Δ’fを考える
          2)関数Δ’fを、ルベーグの意味で、xについて区間[ 0,1 ]で積分する”
          ”"choose x with uniform probability from [0,1]."だから (ルベーグの意味で)積分できる”

135:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 22:16:36.61 cTg/FCp5.net
>>120
上記>>119の補足に注意して、もう一度>>115を読んでみな
>>116)"一様分布の測度を今になっておさらいしなくてもいいと思うんですが。自分のためのメモですか?"
と、違う風景が見えるだろう(^^
<参考>
(>>61より)
簡単な話で、”choose x in Step 2 with uniform probability from [ 0,1 ]”だから、 Gameを、[ 0,1 ]の0から初めて1に達するまで、続ける
x=0のときに、Bobのf(x)が分って、同値類が分って、代表f'(x)が決まる。あとを続ければ、Δf = f(x)-f'(x) は、”定義の通り” [ 0,1 ]では有限個しか不一致がないんだ
それだけのこと。つまり、x=0のときに、代表f'(x)が決まるから、あとはどこで有限個が外れるか、その時点で全て分るわけさ!! (^^
これだと、関数の数当てとしては、完全にトリビアで、数学的に無価値だろ? (^^
(引用終り)

136:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/12 22:21:43.25 cTg/FCp5.net
>>125 訂正
上記>>119の補足に注意して
 ↓
上記>>125の補足に注意して

137:132人目の素数さん
17/11/12 22:22:31.77 hePUuc7P.net
>>124-125
すみませんが質問にスパっと答えてもらえませんか?
[1]
代表元は元の問題通り、Step1で事前に作っておくんですか?
それとも>>108の『英文に書いてある』ように、Step3でf(x)を知ってからf'(x)を作るんですか?
>>108
> >>107
> >x=x0以外のf(x)を知った後、代表f'(x)を作ってから、f'(0)を数当ての答えにするわけ?w
>
> 英文では、そう書いてある
[2]
数当ては確率0で成功するんですか?確率1で成功するんですか?
どちらと考えているのですか?

138:132人目の素数さん
17/11/12 22:24:18.02 hePUuc7P.net
[1]も[2]も前者か後者の二択です。
選択式に文章で答えないでください。
院試ならバツですよ(笑)

139:132人目の素数さん
17/11/12 23:17:31.40 GGaVEi9w.net
>>122
仕方ないからね

140:132人目の素数さん
17/11/12 23:18:51.98 GGaVEi9w.net
>>123
いつまでも理解しませんね


141:132人目の素数さん
17/11/12 23:23:37.72 GGaVEi9w.net
あと君がダメなところは
自分で解答ができないところかな
すべて受け売り
数学的な解答は皆無だよ

142:132人目の素数さん
17/11/13 00:07:19.43 y/j3+jT2.net
>>130
>なんで不正解か分かりますか?
に対して
>いつまでも理解しませんね
>ぷ
では、会話が噛み合ってないですよ?院試なら0点です

143:132人目の素数さん
17/11/13 00:14:06.55 MBLE+dEI.net
>>130
再度言いますが、ぷ君の回答>>94は不正解ですw
不正解の理由が分かりますか?
Yes or No?
>>95
> >>94
> > 全く意味がないことばかり書くのね
> > 別にx0が毎回変わってもいいよ
> > f(x0)以外が開示されているということが重要
> > x0が毎回変わろうが変わるまいがf(x0)=g(x0)になる確率は0
>
> 予想どおりの回答をありがとう。不正解ですw
> なんで不正解か分かりますか?
>
> >>74, >>78
> > [確認問題]
> > 前スレのぷ君の『x=0戦略』を考える。
> > 全事象Ω={0}、P(0)=1という自明な確率空間を取ることが出来る。
> > すなわちこの問題ではxは確率変数とみなせる。
> > fもgも任意であり、事前に与えられているとする。
> > このときf(0)=g(0)となる確率は?

144:132人目の素数さん
17/11/13 06:29:21.52 HuwuwlGZ.net
>>115
>(ルベーグの意味で)積分できる
>Bobのf(x)と代表f'(x)とが一致するとき(当りのとき)は値1、
>不一致のとき(当らないとき)は値0、となる関数Δ’fを考える
Δ’fを考えるのに>>61
「[ 0,1 ]の0から初めて1に達するまで、(1or0の判定を)続ける」
なんて書く時点で頭悪いのが分かるな

145:132人目の素数さん
17/11/13 09:22:34.13 Tt1jLH8u.net
お久しぶりです、おっちゃんです。
知らぬ間に随分スレが伸びていたが、スレ主は自演をしているんですか。
>>91
>Q3. [0,1]上の有理数で不連続、無理数で微分可能(当然連続)な関数を1つ示せ
>おっちゃん、出番だよ~(^^
何のテキストの問題かは知らんが、そのような関数は存在するから、自分で考えてみな。
ε-δ 論法が分からないスレ主にとっては、本を読み学習することをキチンと身に付けるよい訓練になるだろう。

146:132人目の素数さん
17/11/13 09:26:50.06 Tt1jLH8u.net
>>91
スレ主にとっては、よい訓練でもあり、よい「機会」でもある。

147:132人目の素数さん
17/11/13 20:30:34.03 y/j3+jT2.net
スレ主は大学一年生に頼んでεδ教わった方がいいよ
そこ履修しないと解析全滅だから

148:132人目の素数さん
17/11/13 22:15:16.60 MBLE+dEI.net
>>137
> スレ主は大学一年生に頼んでεδ教わった方がいいよ
> そこ履修しないと解析全滅だから
数学よりも誠実さと謙虚さを学んでほしい
数学書よりも小学


149:生の道徳の教科書を読んでほしい



150:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/14 00:06:24.89 agSxZaXK.net
どうも。スレ主です。(^^
みなさん、ご苦労さん(^^

151:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/14 00:06:49.99 agSxZaXK.net
>>127-128
数学的に無意味な質問だな
特に[1]
何故か自得できればOKだが(ヒントは同値類)
おそらく出来まい(^^
ともかく
暫く、晒すよ(^^

152:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/14 00:07:43.03 agSxZaXK.net
>>134
>「[ 0,1 ]の0から初めて1に達するまで、(1or0の判定を)続ける」
>なんて書く時点で頭悪いのが分かるな
それ、単に、落ちこぼれ素人衆相手に
かみ砕いた表現をしているのだよ(^^

153:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/14 00:08:57.54 agSxZaXK.net
>>135
おっちゃん、どうも、スレ主です。
自演かどうかは、>>110にID:hePUuc7Pさんのコメントがある通りだよ
>何のテキストの問題かは知らんが、そのような関数は存在するから、自分で考えてみな。
>ε-δ 論法が分からないスレ主にとっては、本を読み学習することをキチンと身に付けるよい訓練になるだろう。
おっちゃん、レベルアップしたね(^^
かわし方上手いよ(^^
これ、つまらんから、下記に<再投稿>しといた
スレリンク(math板:888番)
分からない問題はここに書いてね436
ところで、一つ質問だが、Q.「定数関数も、微分可能だな」(^^

154:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/14 00:10:28.03 agSxZaXK.net
>>137
εδや、同値類の理解が上滑りなのは、サイコパスと落ちこぼれ素人衆だろ
1)εδは >>13 "42 スレリンク(math板:704-707番) <εN論法の丸暗記でない方法「・・・は、任意の有限部分が○○のとき、○○ 」という言い方がキモ>の説明"
2)同値類の理解が上滑りなのは、>>140 の通りだろ

155:132人目の素数さん
17/11/14 00:19:47.67 odeBuPNy.net
自分が理解できないものは無意味である
               スレ主

156:132人目の素数さん
17/11/14 00:39:31.32 v/i8VeKy.net
>>140
すみませんが質問にスパっと答えてもらえませんか?
いつまで逃げるんですか?w
[1]も[2]も前者か後者の二択です。
選択式に文章で答えないでください。
院試ならバツですよ(笑)
[1]
代表元は元の問題通り、Step1で事前に作っておくんですか?
それとも>>108の『英文に書いてある』ように、Step3でf(x)を知ってからf'(x)を作るんですか?
>>108
> >>107
> >x=x0以外のf(x)を知った後、代表f'(x)を作ってから、f'(0)を数当ての答えにするわけ?w
>
> 英文では、そう書いてある
[2]
数当ては確率0で成功するんですか?確率1で成功するんですか?
どちらと考えているのですか?

157:132人目の素数さん
17/11/14 06:31:02.20 IDi6PSmH.net
>>142
なんだ、結局分からないんだw
ところで
>>75
>Q3. [0,1]上の有理数で不連続、無理数で微分可能(当然連続)な関数を1つ示せ
>>77
>Q3は、とある有名なテクストに載っている
ハイラー、ヴァンナーの「解析教程」下に
有理数rが既約分数p/qで表されるとき、1/q^2 無理数か整数で0
という関数がx=0(より一般にはxが整数のとき)で微分可能
という証明が出ているが、無理数の箇所については言及してない

158:132人目の素数さん
17/11/14 06:38:50.39 IDi6PSmH.net
>>147
>Q3. [0,1]上の有理数で不連続、無理数で微分可能(当然連続)な関数を1つ示せ
>これ、なんか、難しい問題なんかね? はて?
面白い問題だね。これがつまらないといってる人は数学のセンスがないよ。

159:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/14 07:09:04.03 agSxZaXK.net
>>146-147
ID:IDi6PSmHさん、どうも。スレ主です。
レスありがとう
ピエロ~、解答が出たよ(^^

160:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/14 07:10:40.31 agSxZaXK.net
>>145
"Here’s a puzzle:"とある
だから、英文法、英文解釈で、”事前事後”を字面だけで解釈するだけでは足りない
背後にある数学の構造を理解しなければ
数学”puzzle”を理解したとは言えない
何故か自得できればOKだが(ヒントは同値類の理解)
おそらく出来まい(^^
ともかく
暫く、晒す(^^

161:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/14 07:19:41.22 agSxZaXK.net
>>109
「ぷふ」さん、どうも。スレ主です。
下記、回答します
スレリンク(math板:40番)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む43
40 名前:132人目の素数さん[] 投稿日:2017/11/12(日) 23:20:35.53 ID:GGaVEi9w [2/2]
>>29
なんで?空いてるのに
(引用終り)
これは、(>>2より)「43 スレリンク(math板) (だれかが立ててスレ。私は行きません。このスレに不満な人は、そちらへ)」
とあるとおり
そこ(43)へ行くと
私は、”スレ主”ではなくなるのでね~(^^

162:132人目の素数さん
17/11/14 07:34:47.67 IDi6PSmH.net
>>148
解答出てないよw
あんたほんとオッチョコチョイだな
せいぜい頑張ってサーチしとけ

163:132人目の素数さん
17/11/14 07:46:07.01 v/i8VeKy.net
>>149
すみませんが質問にスパっと答えてもらえませんか?
いつまでも逃げるんですか?w
[1]も[2]も前者か後者の二択です。
選択式に文章で答えないでください。
院試ならバツですよ(笑)
[1]
代表元は元の問題通り、Step1で事前に作っておくんですか?
それとも>>108の『英文に書いてある』ように、Step3でf(x)を知ってからf'(x)を作るんですか?
>>108
> >>107
> >x=x0以外のf(x)を知った後、代表f'(x)を作ってから、f'(0)を数当ての答えにするわけ?w
>
> 英文では、そう書いてある
[2]
数当ては確率0で成功するんですか?確率1で成功するんですか?
どちらと考えているのですか?

164:132人目の素数さん
17/11/14 16:10:42.76 jtNc+3xe.net
>>151
>解答出てないよw
勿論、分かっているさ~(^^
ところで、>>83>>146は、良いヒントだね(^^
確かに面白い。>>147に同意。
”有理数rが既約分数p/qで表されるとき、1/q^2”(>>146より)で、1/q^4くらいでどうかな?
というのは、下記英文 Thomae's functionで、”f is not differentiable at all irrational numbers.”が参考になる
Hurwitz's theoremから、(Thomae's function通り)1/qだと、”>=1/√5 *i”という評価になる
で、1/q^nの指数nを大きくするというのは、ハイラー、ヴァンナーがヒントになる
だが、1/q^2では足りないだろう
1/q^3でもいいかも知れない
なお、下記証明は、not differentiableを下からの評価で、”>=1/√5 *i ≠ 0”としているが
指数nを大きくして、上からの評価で抑え込んで、=0を示す必要があるが、これまだ考えていないが、なんとかなりそうだろ?(^^
URLリンク(ja.wikipedia.org)
トマエ関数
 ↓
(英語版)
URLリンク(en.wikipedia.org)
Thomae's function
(抜粋)
f is not differentiable at all irrational numbers.
 ・
According to Hurwitz's theorem,
 ・
Thus for all i,・・・>=1/√5 *i ≠ 0 and so f is not differentiable at all irrational x_0.
(引用終わり)

165:132人目の素数さん
17/11/14 16:11:08.07 jtNc+3xe.net
>>153 関連
<追記>
なお、上記のThomae's function引用の下記のURLが、ID登録を要求してくるので、フリーなサイトを探しておいた(^^
URLリンク(math.uga.edu)
Kim, Sung Soo. "A Characterization of the Set of Points of Continuity of a Real Function." American Mathematical Monthly 106.3 (1999): 258-259.

166:132人目の素数さん
17/11/14 16:11:22.11 jtNc+3xe.net
>>152
(>>149補足)
ヒント:同値類は、時間に依存しない(^^

167:132人目の素数さん
17/11/14 19:02:16.77 odeBuPNy.net
>>155
時間の定義を述べよ

168:132人目の素数さん
17/11/14 19:33:08.76 xUezoIEB.net
>>156
定義の定義を述べよ

169:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/14 19:34:20.57 agSxZaXK.net
>>156
問題に即して言えば
(>>61より)"When, in step 3, Bob reveals {(x_0, f(x_0))|x_0≠x},"
の前と後だが
数学的には、いつでもだな(^^

170:132人目の素数さん
17/11/14 19:35:12.63 IDi6PSmH.net
>>153
>>解答出てないよw
>勿論、分かっているさ~(^^
どうだかなあ
>1/q^4くらいでどうかな?
どうかな?じゃなくて証明しろよ
>1/q^3でもいいかも知れない
かも知れない?じゃなくて証明しろよ
>Hurwitz's theorem
微分不能性ならそれでもいいが、
微分可能性なら不等号の向きを
逆にしないとダメだぞ
ついでにいうと1/q^2だと無理数のところで微分不能というのは
以下のDirichletのDiophantus近似定理から導かれる
”任意の無理数βに対し、
 0<|β-p/q|<1/q^2を満たす
 無限に多くの有理数p/qが存在する”
URLリンク(ja.wikipedia.org)

171:132人目の素数さん
17/11/14 19:42:31.89 odeBuPNy.net
>>157
そんなことも分からんなら数学なんてやらなくてよろしい

172:132人目の素数さん
17/11/14 19:53:10.43 KVm/4


173:unh.net



174:132人目の素数さん
17/11/14 20:10:11.05 syMymirh.net
>>155
すみませんが質問にスパっと答えてもらえませんか?
等価だというならどちらかを選んでもいいわけでしょ?(笑)
なんでいつまでも逃げるんですか?
[1]も[2]も前者か後者の二択です。
選択式に文章で答えないでください。
院試ならバツですよ(笑)
[1]
代表元は元の問題通り、Step1で事前に作っておくんですか?
それとも>>108の『英文に書いてある』ように、Step3でf(x)を知ってからf'(x)を作るんですか?
>>108
> >>107
> >x=x0以外のf(x)を知った後、代表f'(x)を作ってから、f'(0)を数当ての答えにするわけ?w
>
> 英文では、そう書いてある
[2]
数当ては確率0で成功するんですか?確率1で成功するんですか?
どちらと考えているのですか?

175:132人目の素数さん
17/11/14 20:16:05.38 odeBuPNy.net
>なんでいつまでも逃げるんですか?
アホがバレるから ← もうバレてるw

176:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/14 20:42:07.06 agSxZaXK.net
>>159
ガロア語録 "On jugera":「証明は思いつくであろう」(^^
スレ4 スレリンク(math板:229番)
229 返信:現代数学の系譜11 ガロア理論を読む[] 投稿日:2012/05/11(金) 07:53:48.30
下記"On jugera"について
the crucial lemmaは、>>3では、第III節の定理で
"On jugera":「証明は思いつくであろう」と守屋は訳している
”My opinion is in paragraph 37" (freely translated)”は、Edwards (著) Galois Theory>>174の序文 ページixの通りなので、この文はここから採ったのだろう
URLリンク(www2.ee.ufpe.br)
A BIT OF HISTORY: GALOIS' LIFE.
ON THE STATEMENT "On jugera".
This famous passage is the one where Galois proves the crucial lemma stating that any rational function of the roots can be expressed as a rational function of the Galois resolvent.
Poisson (What about him?) had called Galois' prove insufficient. Galois, rather than elucidate his proof, laconically replied, "That remains to be seen.
My opinion is in paragraph 37" (freely translated).
It is easy to understand Poisson's position. Galois' proof can be regarded as as, at best, a sketch, and therefore is certainly "insufficient" if one is in any doubt as to the correctness of his theory and the accuracy of his reasoning.
In his report to the Academy, Poisson said of Galois' memoir as a whole that
<< We have made every effort to understand Mr. Galois' proof. His argument are not clear enough, nor developed enough, for us to be able to judge their correctness... >>.
つづく

177:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/14 20:42:39.86 agSxZaXK.net
>>164 つづき
He hoped that Galois would improve and amplify his exposition of his work,
but concluded "In the state in which it is now submitted to the Academy, we cannot recommend that you (Mr. Lacroix) give it your approval".
At the time, confronted with an incomprehensible manuscript and a 19-year-old author who could well be asked to improve on it (and who was in trouble with the police to boot),
one might well decide to recommend to one's colleagues that they not endorse it.
H.M. EDWARDS,"Galois Theory",NY: Springer-Verlag,1984.
以上

178:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/14 20:51:54.22 agSxZaXK.net
>>164-165
冗談半分、本気半分
まあ、おれの主義は、「原則として、5CH(含む2CH)バカ板では証明は読まない書かない」ってことだ
まあ、略証くらいは考えみるかなー(^^
>微分可能性なら不等号の向きを
>逆にしないとダメだぞ
そうそう、そこ同意だ
>>153に書いた通り”下記証明は、not differentiableを下からの評価で、”>=1/√5 *i ≠ 0”としているが
指数nを大きくして、上からの評価で抑え込んで、=0を示す必要があるが、これまだ考えていないが、なんとかなりそうだろ?”)
>ついでにいうと1/q^2だと無理数のところで微分不能というのは
>以下のDirichletのDiophantus近似定理から導かれる
ヒントありがとう
そのうちな
気長に待ってくれ(^^

179:132人目の素数さん
17/11/14 21:03:59.78 v/i8VeKy.net
>>157
> >>156
> 定義の定義を述べよ
こういうウケないことを言うID:xUezoIEB=ぷ君w

180:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/14 21:22:21.83 agSxZaXK.net
>>159
ありゃりゃ??
”ついでにいうと1/q^2だと無理数のところで微分不能というのは
以下のDirichletのDiophantus近似定理から導かれる
”任意の無理数βに対し、
 0<|β-p/q|<1/q^2を満たす
 無限に多くの有理数p/qが存在する””
それ、>>153引用の”Hurwitz's theorem”(下記)と同じだよ(^^
URLリンク(ja.wikipedia.org)(%E6%95%B0%E8%AB%96)
フルヴィッツの定理 (数論)
(抜粋)
数論において,フルヴィッツの定理(英: Hurwitz's theorem)とは,アドルフ・フルヴィッツ (Adolf Hurwitz) の名に因んだ定理で,ディオファントス近似の上界を与える.
|ξ - m/n |< 1/(√5n^2 )
となるものが無限個存在する.ξ が無理数であるという仮定を外すことは出来ない.さらに,定数 √5 は最良のものである.
(引用終り)

181:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/14 22:00:12.64 agSxZaXK.net
>>159 追加
ところで、おまえ、下記のThomae's functionの「f is not differentiable at all irrational numbers.」証明を読んでないみたいだから、引用しておくよ(^^
https://en.wikipedia.org/wiki/Thomae%27s_function
Thomae's function
(抜粋)
f(x)= 有理数rが既約分数p/qで表されるとき、1/q 無理数で0 (注:>>83同様)
f is not differentiable at all irrational numbers.
All sequences of irrational numbers (ai≠ x0)_(i=1~∞ ) converging to the irrational point x0 imply a constant sequence (f(ai)=0)_(i=1~∞ ),
identical to 0,
and so lim _(i→ ∞ )| (f(ai)-f(x0))/(ai-x0))|=0.
According to Hurwitz's theorem, there also exists a sequence of rational numbers (bi=ki/i)_(i=1~∞ ),
converging to x0, with (ki∈ Z ,i∈ N )) (ki∈ Z ,i∈ N )) coprime and |ki/i-x0|< 1/(√ 5)* i^2).
Thus for all i,: |(f(bi)-f(x0))/ (bi-x0)| > (1/i - 0)/(1/((√ 5)* i^2)))= √ 5* i ≠ 0 and so f is not differentiable at all irrational x0.
(引用終り)

182:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/14 22:14:42.31 agSxZaXK.net
>>169 追加
Thomae's function なら、f(bi)=1/i だから、√ 5* i ≠ 0
ハイラー、ヴァンナーの「解析教程」下なら、f(bi)=1/i^2 だから、√ 5 ≠ 0
で、例えば、1/q^3 なら、f(bi)=1/i^3 だから、√ 5/i → 0 (i → ∞)
つまり、1/q^n で、n >=3 なら、下限の√ 5 ≠ 0などが、外れるってこと
なので、”1/q^2だと無理数のところで微分不能”(>>159より)は、大した話じゃ無い

183:132人目の素数さん
17/11/15 06:32:39.29 fz0TcIh0.net
>>166
>証明は読まない書かない
証明は読めない書けない、の誤りだろw
>略証くらいは考えみるかなー(^^
略証を考える時点でバカ
証明ができたあとで省略することはできるが
省略したまま考えることはできない
>気長に待ってくれ(^^
三日間無駄に過ごした馬鹿に贈る
URLリンク(www.unirioja.es)

184:132人目の素数さん
17/11/15 07:49:35.61 SoppC7O2.net
スレ主の略証はいつもマチガッテル

185:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/15 08:08:00.76 dypommzJ.net
>>169 追加



186:According to Hurwitz's theorem, there also exists a sequence of rational numbers (bi=ki/i)_(i=1~∞ ), converging to x0, ↓ |ki/i - x0| > |ki+1/i+1 - x0| が使えるかな?(^^ なお、訂正 https://en.wikipedia.org/wiki/Thomae%27s_function  ↓ https://en.wikipedia.org/wiki/Thomae%27s_function converging to x0, with (ki∈ Z ,i∈ N )) (ki∈ Z ,i∈ N ))  ↓ converging to x0, with (ki∈ Z ,i∈ N )



187:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/15 08:25:08.65 dypommzJ.net
>>171
ピエロ、ありがとう
たまらずPDFアップかな(^^
まあ、数学的には、論文にするには、その程度必要だわな
要は、1/q^v でvの臨界指数で類別する。それはおれも考えていた
>>153に書いたように、1/q^nの指数n で、”1/q^3でもいいかも知れない”と書いたが、数学的にはどこか臨界指数があるだろうと
ただ、最初の問題なら、単に指数nを大きくするだけで足りるから、証明はそれほど難しくない
>>173に書いたように、x0の収束列の存在から、|ki/i - x0| > |ki+1/i+1 - x0| と、|ki/i - x0|に対して下からの評価が使えそうと思いついたところだった
まあ、証明を考える手間が省けたので助かったよ
問題を考え出したのは、昨日の昼頃からだから、実質1日弱かな(^^
>>83>>146のヒントがなければ、無理だが、これだけヒントがあれば、あとは何とかなるよ(^^

188:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/15 08:35:06.41 dypommzJ.net
>>171
"略証を考える時点でバカ
証明ができたあとで省略することはできるが
省略したまま考えることはできない"
おれみたいな素人がいうことでもないが、おそらく、それ外れだよ
数学以外の分野でもそうだが、細部を詰めることと、大きな荒筋を考えることとは、両立するぜ
絵画でいえば、展覧会の絵の前にデッサンがあり、デッサンの前に構想があり、構想の前にインスピレーションがある
それが、通例だろう(^^
テイラーさんのフェルマー予想しかり
ペレリマンのポアンカレ予想しかり

189:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/15 08:36:55.71 dypommzJ.net
>>172 訂正 (^^
スレ主の略証はいつもマチガッテル

スレ主はいつもは証明を書かない

190:132人目の素数さん
17/11/15 11:55:26.79 xIKSd5aB.net
《トマエ関数のx=0での微分係数》
Tomae's f(x) とは、簡易に解説すると、
x=p/q ──★ で
y=1/q  ──☆ という関数ぢゃ
★、☆より、
y=1/p になる。──○
ここで
p={1,2,3,4,5,6,…,∞}である。──◎
pの元に∞があるのは変だと思うチミ
Oh No But、∞を含めると善い感じぢゃ

 p<∞なら★は有理数ぢゃが、
 p=∞なら★は無理数なのぢゃ。で
 ○に代入で、y = 1/∞ ∴y=0 イー感じ
  
さて、本題、x=0+でのdy/dxぢゃが、
★☆およびロピタルの定理より、
dy/dx = y/x = 1/p となり、◎より、
dy/dx = {1, 1/2, 1/3, 1/4,…,0} となる。
微分係数が、一意には定まらないだけで
0から1の間で離散的に分布している。
さて、☆のかわりに、
y=1/q^2  だとどうなるか?
dy/dx=2(1/p^2)x

p=∞(無理数)、p<∞(有理数)でも
x=0で、dy/dx=0
となる。

191:132人目の素数さん
17/11/15 17:44:10.76 xIKSd5aB.net
>>177について、いろいろ訂正(>_<)
訂正前
y=1/p になる。──○
訂正後
y=(1/p)x になる。──○
訂正前
○に代入で、y = 1/∞ ∴y=0
訂正後
○に代入で、y = x/∞ ∴y=0
それ以前にいろいろありそう。単なる呟きな
無視してください。

192:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/15 19:29:36.70 dypommzJ.net
>>177-178
ID:xIKSd5aBさん、どうも。スレ主です。
> p<∞なら★は有理数ぢゃが、
> p=∞なら★は無理数なのぢゃ。で
> ○に代入で、y = 1/∞ ∴y=0 イー感じ
この視点は素晴らしいよね(^^
似たことは(”無理数は分母が∞の有理数”)、考えたが、「y = 1/∞ ∴y=0 イー感じ」までは到達していなかった
なるほど。これで、有理数の場合と無理数のy=0がつながるね
>★☆およびロピタルの定理より、
ロピタルの定理か、懐かしい�


193:ヒ ロピタルの定理を、微分係数の分母分子に適用するという発想の飛躍ね~(^^ 感心しました(^^ まあ、数学って、厳密な証明の前に、”当りをつける”という行為 これ、大事です。「ロピタルの定理を強引に使ったらどうなるか」みたいな(^^ 今回の場合は、>>171のピエロの示したPDFにあるように、関数1/q^n で、指数n=2のときは、微分不可だが n>2 (nは整数に限らない)なら、微分可能だとあるねので、n=2での適用はNGみたいだが(^^ >いろいろ訂正(>_<) 細かいところは、まだ少しありそうだが、大筋は間違っていないし そういう大づかみに理解するのは、数学として大事と思うよ。レスありがとう(^^ つづく



194:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/15 19:30:50.71 dypommzJ.net
>>179 つづき
<参考>
URLリンク(ja.wikipedia.org)
ロピタルの定理
(抜粋)
発見
本定理はスイスの数学者、ヨハン・ベルヌーイによって発見されたものであるとされている[1] (ロピタルの定理論争を参照)。
本定理の名称としては、欧州で最初の微分学書である l'Analyse des Infiniment Petits pour l'Intelligence des Lignes Courbes (1,696年, 直訳: 曲線の理解のための無限小の解析) を出版し[2]、その中で本定理を広く世に知らしめた17世紀のフランスの数学者、ギヨーム・ド・ロピタルの名を冠してロピタルの定理と呼ばれることが通例である。
ベルヌーイとロピタルとの間には契約があってロピタルは命名権のためにいくらかの対価を与えたということである。ロピタルの死後にベルヌーイが自分こそが定理の発見者であると暴露した[3]。
(引用終り)
URLリンク(examist.jp)
極限の最強裏技:ロピタルの定理 | 受験の月
(抜粋)
裏技として最も有名で人気が高いのがみんな大好きロピタルの定理である。多くの参考書・問題集でも発展扱いで取り上げられており、その圧倒的な便利さは他の裏技の比ではない。
(引用終り)
URLリンク(studyplus.jp)
ロピタルの定理とは?記述試験では使えない?入試で使える実践解説 2017/05/17
(抜粋)
数学3において、不定形となってしまう極限を簡単に求められる裏ワザの様な定理です。
しかし、便利である反面ロピタルの定理が使えるためには幾つかの満たさなければいけない条件があります。
しかも、「記述問題で何も断らずに使うと大幅な減点をされてしまう」という話もあります。
(引用終り)
URLリンク(mathtrain.jp)
ロピタルの定理の条件と例題 | 高校数学の美しい物語 2016/06/12
以上

195:132人目の素数さん
17/11/15 19:42:29.78 fz0TcIh0.net
>>174
>要は、1/q^v でvの臨界指数で類別する。それはおれも考えていた
無理するな
>数学的にはどこか臨界指数があるだろう
微分可能な点が出てくるところを臨界といってるなら、2を超えた瞬間
ところで貴様は英語が読めないみたいだから教えてやるが
任意のnで、微分不可能な無理数は存在する
さらにいえば、1/q^nを1/e^(-q)に置き換えても
リュービル数では微分不可能URLリンク(kbeanland.files.wordpress.com)

196:132人目の素数さん
17/11/15 19:55:59.80 aDiqJIlZ.net
>>172
>スレ主の略証はいつもマチガッテル
だね、大の勉強嫌いが正しい略証など書けるはずもなく
>>176
>スレ主の略証はいつもマチガッテル
>↓



197:スレ主はいつもは証明を書かない スレ主は国語もダメだね 略証の話をしてるんだよ?”証明”なんて一言も書いてないでしょ? スレ主はco-tailやら決定番号∞やらで何度も略証を書いた(尽く間違っていたが) そんな国語力じゃ折角指摘をもらっても無駄になるだけ もっと国語を勉強しなさい、数学はその後



198:132人目の素数さん
17/11/15 19:58:40.15 aDiqJIlZ.net
>>174
>>83>>146のヒントがなければ、無理だが、これだけヒントがあれば、あとは何とかなるよ(^^
εδも理解せずにどこからその自信が出て来るのか謎

199:132人目の素数さん
17/11/15 20:02:05.88 aDiqJIlZ.net
>>175
完全に間違い
証明できたと思って細部を詰めたら致命的な間違いだったなんてケースは山ほどある

200:132人目の素数さん
17/11/15 20:06:14.56 aDiqJIlZ.net
>>175
>おれみたいな素人がいうことでもないが
お前が素人?何の冗談?
お前はサルだよ、だって人間の言葉が通じないじゃん

201:132人目の素数さん
17/11/15 20:09:42.88 LEAf3nju.net
       iイ彡 _=三三三f           ヽ
       !イ 彡彡´_ -_=={    二三三ニニニニヽ
      fイ 彡彡ィ 彡イ/    ィ_‐- 、   ̄ ̄ ヽ     し  ま
      f彡イ彡彡ィ/     f _ ̄ ヾユ  fヱ‐ォ     て  る
      f/ミヽ======<|-'いシ lr=〈fラ/ !フ    い  で
      イイレ、´彡f        ヽ 二 _rソ  弋_ { .リ    な  成
      fノ /) 彡!               ィ     ノ ̄l      .い   長
      トヾ__ら 'イf     u    /_ヽ,,テtt,仏  !     :
      |l|ヽ ー  '/          rfイf〃イ川トリ /      .:
      r!lト、{'ー‐    ヽ      ´    ヾミ、  /       :
     / \ゞ    ヽ   ヽ               ヽ /
     ./    \    \   ヽ          /
  /〈     \                 ノ
-‐ ´ ヽ ヽ       \\     \        人

202:132人目の素数さん
17/11/15 20:32:18.56 fz0TcIh0.net
>>183
>どこからその自信が出て来るのか
無知と怠惰と劣等感の反動からだろうな

203:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/15 21:25:18.86 dypommzJ.net
>>181
ピエロ、ご苦労(^^
君は、なかなか、検索能力があるね(^^
小学生なのに、えらいね~!(^^

204:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/15 21:25:59.28 dypommzJ.net
ああ、その他の落ちこぼれ素人衆も、ご苦労さん!(^^

205:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/15 21:39:17.06 dypommzJ.net
>>185
「ぷふ」さんとの会話も
さると人とだった気がする今日このごろ(^^
どっちが人でどっちがさるか、見る人が見れば分るだろう(^^

206:132人目の素数さん
17/11/15 21:45:39.10 aDiqJIlZ.net
>>190
自分にさん付けするなよキモい

207:132人目の素数さん
17/11/16 01:39:24.16 mH0j6A8o.net
>>1
5ちゃん(2ちゃん)の書き込みのほとんど99%は5ちゃん管理人によるものです
管理人は400人くらいいて、文系の才能のない売れないライターがバイトで5ちゃんに書き込んでいます
だから詳しい書き込みができるんです
5ちゃんは管理人がIDを変えながら書き込んでる掲示板です
5ちゃんは管理人はハッキング、ストーカーをしてきます
5ちゃんは管理人はユーザーのパソコンをハッキングして個人情報を覗き見しています
5ちゃん掲示板を見てるだけでもどこを見てるかリアルタイムで分かるようになっています
(管理人が監視してるスレを見ただけでハッキングされる恐れがあります)

~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~

昔2ちゃんの薬物板が警察につぶされた後にプロキシーチャンネルという新たな薬物掲示板ができて、
そこで全国的に違法薬物(覚せい剤など)の販売が行われていたんです。
プロキシーチャンネルをいい意味で荒らしていたら、2ちゃん管理人にハッキングされて、パソコンをのぞき見されました。
だから2ちゃん管理人がプロキシーチャンネルに関わっていたんだと思います。
2ちゃん管理人の中に薬物売買に関わるような怪しい人がいたと思ってます。
プロキシーチャンネルには2ちゃんのような形で板は1つしかないけどスレがたくさんある作りでした。
そこで神奈川県の薬物の売人がスレを30個以上作って自動的に24時間体制でスレを上げて目立つようにして違法薬物の宣伝を
してたんだけど、プロキシーチャンネルが突然閉鎖される1日か2日くらい前に神奈川の売人の自動スレ上げがストップしたんです。
神奈川の売人のスレが止まったと思ったらプロキシーチャンネルが突然閉鎖。
閉鎖された時期は薬物の売人がたくさん逮捕されてて、報道もされてて、その売人たちが使っていたサイトがプロキシーチャンネルだったから
閉鎖されたんだと思います。
2ちゃん管理人は荒らし認定したユーザーにハッキングだけじゃなく神奈川県でストーカーまでして個人を特定しようとしてきたので、
この神奈川県の薬物の売人(薬物組織)と同じ神奈川なので繋がりがあるのかも。
プロキシーチャンネルが突然閉鎖されたのは2~3年前の9月か10月頃です。

208:132人目の素数さん
17/11/16 01:47:41.14 7u2GJGC4.net
>>190
> >>185
> 「ぷふ」さんとの会話も
> さると人とだった気がする今日このごろ(^^
> どっちが人でどっちがさるか、見る人が見れば分るだろう(^^
さすがに ぷ君 が『人』とは明言できなかろう。
発言に責任をもつスレ主らしい態度であるw
見る人が見れば小学生でも分かるからなw

209:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/16 06:20:05.56 rwuHSt0/.net
<過去スレ引用>
現代数学の系譜 工学物理雑談 古典ガロア理論も読む45
スレリンク(math板:41番)-43
41 名前:確率論の専門家[sage] 投稿日:2017/10/26(木) 06:21:17.51 ID:IhvGJ1uR [2/4]
時枝記事で証明しているのは
P(s^i_{D^i}=s'^i_{D^i})>=99/100
です
確率変数は実はs^iのiだけです
それが分かるのはこの箇所です
「さて1~100のいずれかをランダムに選ぶ。」
もちろんs^1~s^100の中身はどんな実数でも構いません
しかし、確率計算においては、 s^1~s^100は変化させていません
やってることは、どのs^iを選ぶかだけ
つまり変化するのはiだけです
「箱をみな閉じる.」
つまり、箱の中身は変えられない、ということですよ
その上で、計算した確率が99/100です
つまり箱の中身が何であれ、 確率変数ではないということです
時枝記事では、例えば
P(X^100_{D^100}=X'^100_{D^100})>=99/100
のような強い主張は不必要です
無限列(もしくはその各項)を確率変数とする必要はありません
つづく

210:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/16 06:21:17.04 rwuHSt0/.net
>>194 つづき
スレリンク(math板:42番)-43
42 返信:確率論の専門家[sage] 投稿日:2017/10/26(木) 06:51:57.71 ID:IhvGJ1uR [3/4]
>>26の519の質問の答えが
>>41で述べた以下の文章
「確率計算においては、 s^1~s^100は変化させていません」
>>31の531の発言
「2個の自然数が与えられたとして確率を計算している」
>>41の以下の文章
「さて1~100のいずれかをランダムに選ぶ。(中略)
 D >= d(s^k) を仮定しよう.この仮定が正しい確率は99/100, 」
で述べられた数列の決定番号に基づく計算を指していると考えられる
>>32の535
「非可測であることに目をつぶって計算することの意味を感じないな 」
だが、確率変数がXではなくiであることを理解したならば
「非可測性とは無関係の計算だが、確率論的に十分意味がある」
と述べるのが正しい
何度�


211:ナも言わせていただくがXを確率変数として考える必要はない 43 返信:確率論の専門家[sage] 投稿日:2017/10/26(木) 07:04:12.30 ID:IhvGJ1uR [4/4] >>32の538だが、時枝記事による予測の成功は 数列の各項の独立性とは無関係である (非可測性や独立性にとらわれると時枝記事を理解できない  そもそもXが確率変数ではないからだ) >>34の564 「時枝氏の方法は「確率は計算できない」が今の確率論の答えだと思う. 」 は時枝氏の方法を誤解したが故の誤りだといわざるを得ない Xを確率変数とした計算でない、というだけであって iを確率変数とすれば、確率論により初等的に計算できる 44 名前:132人目の素数さん[] 投稿日:2017/10/26(木) 20:07:41.66 ID:FlCy9rPW [3/5] その初等算数さえ理解できないサルがいるらしい (引用終り)



212:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/16 06:25:00.47 rwuHSt0/.net
>>193
上記>>194-195は、あなたの発言でしたかね?(^^
44のID:FlCy9rPW以外は。44のID:FlCy9rPWは、小学生のピエロだと思うが・・
これ、小学生は賛同してくれても、大学数学科上級生は、賛同しないように思うよ(^^

213:132人目の素数さん
17/11/16 09:56:09.55 j2ynrfH6.net
>>194
開けてない箱の中身が確率変数なんですよ
誰かがそれを決めていようが今井が関係ナシ

214:132人目の素数さん
17/11/16 09:58:04.49 j2ynrfH6.net
ああこれ引用だったか


215:132人目の素数さん
17/11/16 11:36:46.04 /MLxWF5k.net
>>192
ご苦労さん(^^
下記引用は、検索ヒットしたは昨日の投稿だ
これに追記して、マルチポストしたんだね
まあ、おれ(スレ主)が文系かどうか、ピエロは分かっているだろうよ(^^
スレリンク(ms板)
【犬茶放棄】加藤茶の嫁229【パクリ・嘘付きお手の物】
(抜粋)
159可愛い奥様2017/11/15(水) 02:20:24.87ID:OOeHeBvO0
>>1
5ちゃん(2ちゃん)の書き込みのほとんど99%は5ちゃん管理人によるものです
管理人は400人くらいいて、文系の才能のない売れないライターがバイトで5ちゃんに書き込んでいます
だから詳しい書き込みができるんです
5ちゃんは管理人がIDを変えながら書き込んでる掲示板です
5ちゃんは管理人はハッキング、ストーカーをしてきます
5ちゃんは管理人はユーザーのパソコンをハッキングして個人情報を覗き見しています
5ちゃん掲示板を見てるだけでもどこを見てるかリアルタイムで分かるようになっています
(管理人が監視してるスレを見ただけでハッキングされる恐れがあります)
(引用終わり)

216:132人目の素数さん
17/11/16 11:57:32.61 /MLxWF5k.net
>>179 追記
下記のピエロ紹介の論文(>>171)は、結構大学1年~2年の教育素材として、面白いと思う(^^
有理数の稠密性と無理数の関係
”DIOPHANTINE APPROXIMATION”
関数の連続・不連続
微分可能と不可能と
それに、関数y=1/x^v の指数vによる属性の変化
さまざまな数学の要素が融合して
実に面白い素材だし
数学史の一コマにも使えるかな?(^^
URLリンク(www.unirioja.es)
DIFFERENTIABILITY OF A PATHOLOGICAL FUNCTION,
DIOPHANTINE APPROXIMATION,
AND A REFORMULATION
OF THE THUE-SIEGEL-ROTH THEOREM
JUAN LUIS VARONA
This paper has been published in Gazette of the Australian Mathematical Society, Vol-
ume 36, Number 5, November 2009, pp. 353{361.
Received 29 February 2008; accepted for publication 6 October 2009.
URLリンク(www.unirioja.es)
Juan L. Varona Dept. of Mathematics and Computation University of La Rioja
URLリンク(en.wikipedia.org)
University of La Rioja
(抜粋)
Type Public
Established 1992
Students 7,600
Address Avda. de la Paz, 93 26006, Logrono., Logrono, Spain
Website URLリンク(www.unirioja.es)
The University of La Rioja (UR) is a public institu


217:tion of higher education based in Logrono, La Rioja, Spain. Inaugurated during 1992-1993 from various existing schools and colleges, it currently teaches Grades 19 adapted to the European Higher Education, and a varied program of masters, summer courses and courses of Spanish language and culture for foreigners. (引用終わり)



218:132人目の素数さん
17/11/16 12:46:04.02 rWR6MHtP.net
>>197
こいつは ぷ 

219:132人目の素数さん
17/11/16 13:26:41.61 /MLxWF5k.net
論争当事者同士だと、あれだけの発言で、だれか発言者が分かるのかね?(^^
というか、上記>>194-195の発言当事者だと、自分以外のだれかと選択肢が狭まるが
私の立場だと、発言当事者も可能性としてはありうるからな~(^^

220:132人目の素数さん
17/11/16 13:53:40.78 /MLxWF5k.net
>>200 補足
URLリンク(www.unirioja.es)
DIFFERENTIABILITY OF A PATHOLOGICAL FUNCTION,
DIOPHANTINE APPROXIMATION,
AND A REFORMULATION
OF THE THUE-SIEGEL-ROTH THEOREM 2009
抜粋引用
In the opinion of this author, fν is a very
interesting function, and it is worthwhile to continue analyzing its behaviour.
In this way, we find examples of functions whose properties about con-
tinuity and dierentiability are pathological at the same time. For every
ν > 0, the function fν is continuous at the irrationals and discontinuous
at the rationals. And, when ν > 2 (that is the most interesting case), we
prove that fν is dierentiable in a set Dν
It is astonishing that, dierentiability being a local concept, fν is dieren-
tiable almost everywhere in spite of the fact that it is not continuous at any
rational number.
We finish the paper by showing a reformulation of the Thue-Siegel-Roth
theorem in terms of the dierentiability of fν for ν > 2 (see Theorem 3
and the final Remark). It seems really surprising that a theorem about dio-
phantine approximation is equivalent to another theorem about the dier-
entiablity of a real function: a nice new connection between number theory
and analysis! As far as I know, this characterization of the Thue-Siegel-Roth
theorem has not been previously observed.
Remark 1. The pathological behavior of functions is a useful source of
examples that help to understand the rigorous definitions of the basic con-
cepts in mathematical analysis. In this respect, it is interesting to note that,
here, we have shown a kind of pathological behaviour that is dierent from
that of the more commonly studied: the existence of continuous nowhere
dierentiable real functions, whose most typical example is the Weierstrass
function
4. The theorem of Thue-Siegel-Roth revisited

221:132人目の素数さん
17/11/16 14:32:12.79 j2ynrfH6.net
>>201
むふ

222:132人目の素数さん
17/11/16 17:15:31.23 /MLxWF5k.net
>>204
やっぱり、「ぷふ」さんか。お元気そうでなによりです(^^
で、上記>>194-195の発言当事者も判明した(>>202)ってことだな(^^

223:132人目の素数さん
17/11/16 19:41:57.60 /4vrhWCo.net
長谷川櫂とかいう化け物オカマババアが
また読売新聞の「四季}に恥知らずな記事を載せてやがるぞ。
この熊本県下の片田舎部落出身者めは、同性愛者のくせして異性愛者のふりをし
相手を欺して異性=女性と結婚しておき


224:ながら、その後も秘かにハッテンバへ忍び通っていたという。 今でも東海大学の体育会系学生たちの部室に潜入しては、ケツ割れサポーターだの使用済みの下着だのを 盗み取ったり、藤沢近くのゲイ・ビーチに接近を試みては、男性たちの裸体を盗撮しているという評判だ。 この長谷川チョンに就いて詳しくは、「長谷川櫂 オカマ」または「長谷川隆喜」で検索を! ちなみに長谷川櫂は、ときどきセーラー服を着て女装するのが趣味だとか。 チョンなので 選挙権も無し 長谷川櫂



225:132人目の素数さん
17/11/16 20:02:38.56 PuXP1TSS.net
>>201
俺も ぷ だと思う

226:132人目の素数さん
17/11/16 20:47:08.82 cPbxBCDE.net
引用元の文献を明らかにするのは良いことだが、ちゃんと理解してんだよね?
正しく内容を理解した上で、適切な文献を出してるのか、読み手をビビらせるために何となく使えそうなのを根拠無しに引っ張ってきて来てるだけなのか、正直分からん。
あと、こう書かれている文献があるので正しいと、主張するのは稚拙過ぎない。咀嚼して自分の言葉で表現しないと、自称数学愛好家の域を中々越えられない。もっとも、それで食っていけるヤツもいるが、な。

227:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/16 21:39:14.71 rwuHSt0/.net
1.まず、はっきりさせておかなければならないことは、ここにはプロ数学者はいないということ!(^^
2.ならば、ここらの連中のカキコは、基本は無価値!
  というか、もし正しいことがあるなら、それと同じことは必ずどこか論文なりテキスト(教科書)にある
 (こんな素人板で、学問的に価値あることが、初出になるわけないだろうよ(^^ )
3.ならば、その論文なりテキスト(教科書)を読む方が、正解だろう
  視認性(読みやすさ)もあるし、自分がなにかに纏めを書くにしても、引用元が5CHではお笑いだ(^^
4.だから、この板で数学的に価値ある内容は、出典の明示された引用が主
  典型が、>>181>>171
  地の文は無価値
  引用提示されたPDFのみが数学的価値あり!だ(^^
5.これが、おれの主義だよ

228:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/16 21:43:25.16 rwuHSt0/.net
追記
ぐだぐだと、自分が引用文献の適否の判断ができない言い訳を書いているとしか思えないな
つーか、おれの書いている地の文は、全部無視するのが正解だろうよ(^^
それでも(地の文を無視しても)、意味があるように書いているつもりだが(^^

229:132人目の素数さん
17/11/16 21:49:59.76 PuXP1TSS.net
と、εδがわからないアホが申しております

230:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/16 21:55:59.24 rwuHSt0/.net
追記の追記
>>171URLリンク(www.unirioja.es)
これ、A4 原稿で9ページで、当然数学記号が駆使されている
上付き添え字、下付き添え字
分数は、上下2段分け・・等々が駆使されている
これを、この5CHバカ板のアスキー限定で展開されて
しかも、素人の証明で校正されていないミスだらけの論証を、なんで苦労して読まなきゃいかんのよ?(^^
最初から、ここに証明がありますとPDFを示せよと!(^^

231:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/16 21:56:39.80 rwuHSt0/.net
ピエロかな?
今日は、作文が少ないね(^^

232:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/16 22:01:01.32 rwuHSt0/.net
まあ、おれは、PDFと同時に、PDFやhtml から、文字化け覚悟で、要点をこの板にコピペしているよ
その理由は、あとからの検索が容易になるからだ
肝心なキーワードが、アップされると
URLだけなどに較べて、後の検索がぐっと楽になるからね(^^

233:132人目の素数さん
17/11/16 22:39:58.13 cPbxBCDE.net
ナルホド。
書き込みした文章自体にあまり意味はもたせてない(
含蓄ある内容を期待されても困る)。引用した文献の
内容の正当性も担保しない。全ては読み手の受け取り
方に依存する。読み手の受け取り方が書き込み主の意
図に沿ってくれれば、和やかな感じに話しが進む。が
、今みたいに意図に沿ってないと、中身の無い不毛な
罵り合いがどんどんエスカレートする。
そうやって、数人の常連による罵倒とテキトーな引用
文献のチラつかせがグルグル回って、このスレは成長
しているのか?
逆を言うと、誰でも納得してしまいそうな数学的な論理を持ってくることは、スレの成長的にはNGってことだな。

234:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/16 23:05:05.85 rwuHSt0/.net
その認識は間違いだ
おれの関連URL、PDFと
他の人の関連URL、PDFと
それで、このスレは成長してい、財産になっている
数人の常連による罵倒(それは、落ちこぼれ素人衆と呼んでいる人たちだが)
まあ、時枝だけは、お付き合い(^^
時枝以外は適当にあしらうのだが
時枝は因縁があってね~(^^
しかし、時間が経てば経つほど、正しい方が有利になる。そのうち決着するだろうよ(^^

235:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/16 23:12:59.16 rwuHSt0/.net
同値類に時間依存性はない
100年前にしたデデキントやネター先生の同値類分類と
現在21世紀の同値類とは、対象と定義が決まれば、一意だろう
100年後の22世紀でも変わらない
それが理解できず質問してくるから、晒している
レトリックだろ? 数学的に時間依存性のない行為を、事前にやっておきますと書かなけりゃ、数学パズルになりはしない・・
一貫校なら
中学生でも分ることだろう

236:132人目の素数さん
17/11/16 23:25:56.06 7u2GJGC4.net
> 逆を言うと、誰でも納得してしまいそうな数学的な論理を持ってくることは、スレの成長的にはNGってことだな。
スレ主は論理を解さない
論理的ならばとっくの昔に話は終わっている
そもそも時枝記事に証明が書かれているのでそれで終わりである

237:132人目の素数さん
17/11/17 00:48:09.69 XUjiYAZL.net
自分が理解できないものは間違いである
               スレ主

238:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/17 07:01:02.43 ZTm1D3ae.net
>>218 訂正
スレ主は論理を解さない
 ↓
スレ主はごまかし論理を見逃さない

論理的ならばとっくの昔に話は終わっている
 ↓
非論理的な落ちこぼれ素人衆が相手で、話がなかなか終わらない

そもそも時枝記事に証明が書かれているのでそれで終わりである
 ↓
そもそも時枝記事が書かれた数学セミナー誌は、レフェリーのいる学術誌ではないので、
書かれた証明が正しいかどうかは、落ちこぼれ素人衆に分るわけがない(^^

239:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/17 07:01:45.43 ZTm1D3ae.net
>>219
自分が理解できない数学パズルの殆どのものは間違いであると思え
               スレ主
注)
数学パズルには大きく分けて二通りある
1.数学パズルの問題が出され、答えが与えられていないもの:答えを出すところがパズル
2.普通には解けない数学パズルの問題が出され、解法が与えられているがパラドキシカルなもの:逆説を解明するところがパズル
時枝は後者だ

240:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/17 07:18:14.65 ZTm1D3ae.net
>>216 補足
>数人の常連による罵倒(それは、落ちこぼれ素人衆と呼んでいる人たちだが)
一人サイコパスがいる。これは罵倒ではなく、事実だ
かれは、2回明白なウソをついた
一つは、「Sergiu Hartの論文は論文誌に掲載されている 彼の著書でも紹介されている」(引用1)というウソ。彼は、典拠を示せない
一つは、「XOR’S HAMMERのHere’s a puzzle」が、Taylor氏の”A Study of Generalized Hat Problems ”にあるというウソ(引用2)
サイコパスは、自分のウソに自分が騙されるようだ(^^
これでは、厳密な論理が求められる数学には向かない性格だろう(^^
(参考)URLリンク(blog.goo.ne.jp) サイコパスの特徴、嘘を平気でつき、人をだまし、邪悪な支配ゲームに引きずり込む 2007年04月06日(>>1
(引用1)
スレ45 スレリンク(math板:149番)
149 返信:132人目の素数さん[sage] 投稿日:2017/10/29(日) 18:49:09.25 ID:BhVhj2R/ [11/12]
>>136
>世間一般の数学界には、時枝の記事の解法は、
>まっとうな数学としては認められていない
>実際、数学の投稿論文にもなっていないし、
>テキストでも扱う例なしだ
↑真っ赤な嘘だな
Sergiu Hartの論文は論文誌に掲載されている
彼の著書でも紹介されている
(引用終り)
(引用2)
スレ45 スレリンク(math板:582番)
582 返信:132人目の素数さん[sage] 投稿日:2017/11/08(水) 06:08:45.65 ID:bFycbFFu [1/5]
>>577
>これまっとうな教科書(テキスト)になってますか?
既出 おまえバカなの?
The Mathematics of Coordinated Inference: A Study of Generalized Hat Problems (Developments in Mathematics) 2013 edition
by Hardin, Christopher S., Taylor, Alan D. (2013) Hardcover
Springer Verlag
URLリンク(pdfs.semanticscholar.org)
(引用終り)

241:132人目の素数さん
17/11/17 07:24:31.57 XUjiYAZL.net
>>221
>自分が理解できない数学パズルの殆どのものは間違いであると思え
つまり時枝記事を理解できないと、どこら辺が?

242:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/17 08:33:22.72 ZTm1D3ae.net
>>223
逆に聞くが
時枝は、”ふしぎな戦略”>>22と書いている
どこが不思議なのだろうか?
その不思議さを、時枝と共有できているかい?
時枝の前半の証明通り
「なんの不思議も無い」と思っているのだろ?(^^

243:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/17 08:37:01.65 ZTm1D3ae.net
>>222 補足の補足
この二つのウソとも、単純な話だ
当然、証拠を出せと言われる
前者は、「これです」と出典を示せば良い
後者は、「ここです」と該当箇所を示せば良い
どちらもそれが出来ないとは、常人からは信じられない(すぐばれる)ウソということ
これから導かれる結論は、常習ウソつきのサイコパス性格ということ

244:132人目の素数さん
17/11/17 11:41:33.01 RN9776gK.net
ほい
URLリンク(newswitch.jp)
量子コンピューター時代が幕開けへ、20量子ビット商用マシンを年内クラウド提供 2017年11月11日付日刊工業新聞電子版
米IBM、50量子ビット機の試作にも成功
(抜粋)
米IBMは10日、20量子ビット(キュービット)のプロセッサーを持つ商用量子コンピューター「IBM Q」システムについて、年末までにクラウド経由で顧客にサービス提供を開始すると発表した。
同時に20量子ビットのアーキテクチャ


245:ーを拡張し、50量子ビットの次世代IBM Qシステムの試作機の製作と稼働に成功したことも明らかにした。量子コンピューティング時代の幕開けが少しずつ近づいてきているようだ。 「IBM Qエクスペリエンス」には、世界中から6万のユーザーがアカウントを登録。そこには1500校以上の大学、300の高校、300の民間企業が含まれる。 これまでに量子コンピューターの機能が170万回使用され、量子コンピューティングの教育などに役立てられているほか、IBM以外で35本以上の研究論文につながっているという。 (引用終わり)



246:132人目の素数さん
17/11/17 11:57:09.25 30YbMEWc.net
>>224
> 逆に聞くが
逆に聞かずにまず答えろw
どこが分からないの?

247:132人目の素数さん
17/11/17 12:03:37.17 RN9776gK.net
時枝が「パズルと書き忘れたのか?」それとも、「パズルに嵌められたのか?」どちらか

248:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/17 12:06:32.36 RN9776gK.net
ありゃ
コテハンとトリップが抜けた(^^

249:132人目の素数さん
17/11/17 13:30:50.41 30YbMEWc.net
>>228
> 時枝が「パズルと書き忘れたのか?」それとも、「パズルに嵌められたのか?」どちらか
こいつ見苦しい

250:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/17 13:43:41.63 RN9776gK.net
>>223
良いからさ
(私の>>56より)
”えーと、時枝の前に、まず、>>471-472の”XOR’S HAMMERの任意関数の数当て解法”(>>540)をやろう!”
だったろ?

(あなたの>>74より)
”明らかにx0∈[0, 1]を一様分布で選ぶとする 元 問 題 と は 異 な る のである。”
 &
”fもx0も事前に与えられて(固定されて)いるのでf(x0)は確定している。
ぷ君に知らされていないだけで、f(x0)は確定しているのである。
f(x0)はRの元のどれか、1か2かπか別のどれか、とにかくある1つのRの元である。
fもx0も確率変数でない以上、f(x0)は確率変数ではない。
もしこの簡単な理屈が分からなければ 分かりません と言え。”
(引用終わり)
だと
こんな屁理屈、まっとうな数学と言えるのかね?
”XOR’S HAMMERの任意関数の数当て解法”のパズル(>>52-53)は、1列で決定番号も使わない単純なパズルだよ
だが、ここでも同じハマり方をしているのか?
”固定”とか、”確定”とか、”確率変数ではない”とか(^^
その論法なら、時枝もハマりで、「当たってなんの不思議もない」となるわな(^^
(プロ数学者は、それだれも認めていないが(^^
 そもそも、そんなに恣意的に、勝手に、 「”固定”とか、”確定”とか、”確率変数ではない”とか」やれるなら、何でもかんでも簡単に証明できるだろうさ(^^ )

251:132人目の素数さん
17/11/17 20:02:40.65 30YbMEWc.net
>>231
自爆乙w

252:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/17 20:32:53.93 ZTm1D3ae.net
>>231 補足
1.(>>217に書いた)「同値類に時間依存性はない」って話も、理解できていなかったんだろうな(^^
2.>>48にあるように、関数f ~ g の同値類で、有限個の値のみ異なる同値類分類をすることを考える。
3.”in step 3, Bob reveals {(x0, f(x0)) | x0 ≠ x }, you know what equivalence class f is in, because you know its values at all but one point. ”
  一つのやり方は、事前に全ての関数を類別して、代表を決めておくこと。これ、正攻法でパズルも同じ記載だ。
  このやり方の問題点は、必要なのは、一つの関数fの同値類にすぎないのに、無駄な多数の同値類分類をすることだ。
  もう一つのやり方は、事後的に”Bob reveals”の後に、問題の関数fの同値類のみを扱うこと。
  こうすれば、無駄な作業はない。
4.さて、同値類分類の目的は、>>48にあるように、
  ”Let g be


253: the representative of that equivalence class that you picked ahead of time. Now, in step 4, guess that f(x) is equal to g(x).”   とするための代表gを得ること。   しかも、代表gはなんでも可で、特別の制約なし。   さすれば、究極の手抜きは、”Bob reveals”の後に、fを得て、fの有限個の数値を適当に異なるようにして、チョコチョコとgを作る。   (関数fの同値類分類を完成させる必要さえない!!)   このgを、さも事前に全ての関数の同値類を分類し、全ての代表を選んでおいた顔をして、「これが代表だよ、Bob!」と、gを出せば、Bobがびっくりするという仕掛けだ(^^ 5.いかにも、正攻法でやれば、大変な作業をして関数の数当てをしているように見えるが、   その実、数学的には、”Bob reveals”の後に、ちょこちょことfをいじって、代表gを作るに等価!(^^ 6.これが、>>48の”The strategy”の数学的パズルの種明かし。   まあ、大学1年の同値類をようやく学んだころの初心者が、こんな目くらましのようなトリックに引っかかり易いのだろうと思う、今日この頃(^^ 以上



254:132人目の素数さん
17/11/17 21:54:29.42 XUjiYAZL.net
>>224
>どこが不思議なのだろうか?
当てられるはずが無いという直観に反する結論が導かれるところ
さあ、答えたぞ?今度はお前の番だ、どこが理解できないのか言いなさい

255:132人目の素数さん
17/11/17 22:54:30.80 30YbMEWc.net
>>231
> その論法なら、時枝もハマりで、「当たってなんの不思議もない」となるわな(^^
何言ってるのか分からん
お前、箱の中身が確率変数じゃなくても数当てはできないって言ってたじゃん。

256:132人目の素数さん
17/11/17 23:03:41.30 XUjiYAZL.net
>お前、箱の中身が確率変数じゃなくても数当てはできないって言ってたじゃん。
ちゃっかり当てられる側に移ろうとしてるw 油断も隙も無いw

257:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/17 23:04:45.74 ZTm1D3ae.net
>>234
時枝は、当てられないということがはっきりしたので、もう分らないところはないよ(^^
それは、>>12-14の通りだ(^^

258:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/17 23:06:33.33 ZTm1D3ae.net
>>235
おまえの相手は、「ぷふ」さんだろ?
”(ぷ君以外は黙っていてくださいね)”(>>74より)

259:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/17 23:08:47.20 ZTm1D3ae.net
>>235-236
国語が意味不明だな(^^

260:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/17 23:12:13.67 ZTm1D3ae.net
>>233 補足の補足
その実、数学的には、”Bob reveals”の後に、ちょこちょことfをいじって、代表gを作るに等価!(^^
これを、数学理論による数当てと思う人は少ないだろうな(^^
”Bob reveals”の情報をそのまま使っているのだからね(^^

261:132人目の素数さん
17/11/17 23:31:55.90 oQVp9LO4.net
>>233
>   その実、数学的には、”Bob reveals”の後に、ちょこちょことfをいじって、代表gを作るに等価!(^^
> 6.これが、>>48の”The strategy”の数学的パズルの種明かし。
これが種明かしだってよ笑笑

262:132人目の素数さん
17/11/17 23:34:14.99 XUjiYAZL.net
>>237
>時枝は、当てられないということがはっきりしたので、もう分らないところはないよ(^^
少し利口になったのかと心配したよ、だが安心した、サルが突然人間になるなんてあり得ないもんなw

263:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/18 07:11:05.12 EemFP5PJ.net
>>231 補足
下記、確率論I, 確率論概論I 原隆 九州大学 より、キーワード”固定”の箇所抜粋
まあ、確かに、確率論で、キーワード”固定”を使っておりますが(^^
それ、きちんと数学的な効果を検証しながら、ステップを踏んで、使っている
貴方のように、むやみやたらと、自分勝手に、ご都合よく、”固定”を使って、「先生、証明できました!」というのは、如何なものか?(^^
それは、数学ではなく、似非数学では?
URLリンク(www2.math.kyushu-u.ac.jp)
確率論I, 確率論概論I 原隆 九州大学
(抜粋)
P20
註2.3.2 概収束と確率収束の定義が少しわかりにくいかも知れないので,補足しておく.
概収束の場合,確率空間の元ω を一つ固定し,この固定したω 毎に極限lim n→∞ Xn(ω) を考えて,
これがX(ω) に等しいか否


264:かを問題にしている(等しくない確率がゼロ,つまり,等しくないよう なω が無視できるほど少ないなら良い). 一方,確率収束の場合は,各n 毎に|Xn(ω)?X(ω)| > ε である確率を問題にしている. つまり, |Xn(ω) ? X(ω)| > ε となるようなω は, n 毎に異なっても,とにかくその確率がゼロに行 けば良い. (引用終り)




次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch