現代数学の系譜 工学物理雑談 古典ガロア理論も読む46at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 - 暇つぶし2ch625:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/26 18:47:23.18 1WQ1V5QH.net
>>398 補足
戻る
URLリンク(www.unirioja.es)
DIFFERENTIABILITY OF A PATHOLOGICAL FUNCTION, DIOPHANTINE APPROXIMATION, AND A REFORMULATION OF THE THUE-SIEGEL-ROTH THEOREM JUAN LUIS VARONA 2009
fν(x)
=0 if x ∈ R - Q(無理数)
=1/q^ν if x = p/q ∈ Q, irreducible (有理数で既約分数)

Theorem 1. For ν > 2, the function fν is discontinuous (and consequently not differentiable) at the rationals, and continuous at the irrationals.
With respect the differentiability, we have:
(a) For every irrational number x with bounded elements in its continued fraction expansion, fν is differentiable at x.
(b) There exist infinitely many irrational numbers x such that fν is not differentiable at x.
Moreover, the sets of numbers that fulfill (a) and (b) are both of them un-countable.
(引用終り)
ここ、無理数を
(a) For every irrational number x with bounded elementsと、
(b) There exist infinitely many irrational numbers x such that fν is not differentiable at x.と
完全に2分したと読んだので、あとの測度論の下記Theorem 2
P6
Theorem 2. For ν > 2, let us denote
Cν = {f ∈ R : fν is continuous at x }
Dν = {f ∈ R : fν is differentiable at x }
Then, the Lebesgue measure of the sets R - Cν and R - Dν is 0, but the four
sets Cν, R - Cν, Dν, and R - Dν are dense in R.
(引用終り)
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch