現代数学の系譜 工学物理雑談 古典ガロア理論も読む46at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 - 暇つぶし2ch465:132人目の素数さん
17/11/21 04:23:26.58 cl7UYlaS.net
正整数nと、超越数 a∈I=(0,1) とを任意に取る。
任意の既約な有理数 x=p/q∈(0,1) に対して f(p/q)=p/q、 任意の無理数 x∈(0,1) に対して f(x)=a
というようにして区間 I=(0,1) で定義された実関数 f(x) を考える。
J={ p/q∈I | |f(a)-f(b)|=|a-p/q)|<1/q^n, (p,q は互いに素) } とおく。
既約有理数 b=p/q∈J を任意に取ると、p/q に対して或る正整数mが存在して、
1=|( f(a)-f(b) )/(a-b)|<1/(q^n|a-p/q|)<m で、1/(m・q^n)<|a-p/q|<1/q^n となる。
また、p/q の分母qと分子pについて q>p≧1 で、Jは可算無限集合だから、
Jの既約有理数 p/q についての分母qに上限は存在しないと同時に下限が存在する。
従って、或る正整数 q≧2 が存在して、k≧q のとき、任意の k>p≧1 なる高々有限個の
既約有理数 p/k∈J に対して 1/k^{n+1}<|a-p/k|<1/k^n となる。
故に、任意の正整数nと超越数 a∈I=(0,1) とに対して、或る正整数 q≧2 が存在して、
k≧q のとき、任意の k>p≧1 なる高々有限個の既約有理数 p/k∈J に対して 1/k^{n+1}<|a-p/k|<1/k^n となる。
故に、任意の正整数nと超越数 a∈I=(0,1) とに対して、可算無限個の既約有理数 p/q∈J に対して 1/q^{n+1}<|a-p/q|<1/q^n。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch