現代数学の系譜 工学物理雑談 古典ガロア理論も読む46at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 - 暇つぶし2ch391:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/19 12:40:20.54 W1ZiI7BV.net
>>342
小学生のピエロちゃん、作文がんばってな~!(^^
>サイコは確率過程の具体例、一つも知らないなw
1年以上前に、なんども繰り返しその話はやっている
新参者のピエロが知らないだけよ
例えば
例1)スレ22 スレリンク(math板:108番)
(抜粋)
108 自分:現代数学の系譜11 ガロア理論を読む[] 投稿日:2016/08/20(土) 11:49:01.21 ID:o5QeTUwB [6/41]
ブラウン運動 URLリンク(ja.wikipedia.org)
(引用終り)
例2)スレ22 スレリンク(math板:131番)
131 自分:現代数学の系譜11 ガロア理論を読む[] 投稿日:2016/08/20(土) 14:45:56.83 ID:o5QeTUwB [24/41]
>>112
>ブラウン運動の時間変数に関する超関数微分がホワイトノイズ
ああ、そうなん? 飛田武幸先生からみか
URLリンク(www.iias.or.jp)
国際高等研究所 International Institute for Advanced Studies | 高等研報告書:
2008年度
0801 量子情報の数理に関する研究 ~エントロピー・
ゆらぎ・ミクロとマクロ・アルゴリズム・生命情報~ 大矢 雅則 359頁 書籍版
URLリンク(www.math.is.tohoku.ac.jp) URLリンク(www.math.is.tohoku.ac.jp)
量子情報の数理に関する研究~エントロピー・ゆらぎ・ミクロとマクロ・アルゴリズム・生命情報~
高等研報告書0801, pp. 173?192, 国際高等研究所, 2008
第7 章ホワイトノイズ解析の新展開
尾畑伸明(東北大学大学院情報科学研究科教授)
(引用終り)
つづく

392:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/19 12:42:47.71 W1ZiI7BV.net
>>362 つづき
囚人と帽子 ”Prisoners and hats puz


393:zle”についても、1年前にやっているから こちらは、びっくりも、しゃっくりもしないんだよ(^^ スレ22 https://rio2016.5ch.net/test/read.cgi/math/1471085771/129 (抜粋) 129 返信:現代数学の系譜11 ガロア理論を読む[] 投稿日:2016/08/20(土) 14:08:49.79 ID:o5QeTUwB [23/41] >>128 つづき http://rio2016.2ch.net/test/read.cgi/math/1452860378/52-53 52 名前:現代数学の系譜11 ガロア理論を読む[] 投稿日:2016/01/16(土) 18:45:43.64 ID:Y3KfUb >>49 どうも。スレ主です。 コメントありがとう 要は、時枝問題は、無限集合を使ったゲームのトリックというエールを貰ったのかな?(^^; ともかく、Terence Taoがコメントしている話は、どこかで読んだかも知れない 100人の囚人が、自分の帽子の色を言い当てると、釈放されるが、その上手い方法や如何にと・・・ 日本語の記事が、検索でヒットするかも えーと ”100人の囚人 自分の帽子の色 放”で下記ヒットか http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1072766815 name_1717さん 2011/10/613:12:57 yahoo. 数学の質問です 論理的に答えてください 100人の囚人が一列にならんでいます Prisoners and hats puzzleと呼ばれる有名問題のようですね。 http://en.wikipedia.org/wiki/Prisoners_and_hats_puzzle#Countably_Infinite-Hat_Solution (引用終り) 以上



394:132人目の素数さん
17/11/19 12:46:10.35 1qHHV2xH.net
>>358
すげー


395:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/19 12:59:16.12 W1ZiI7BV.net
>>343
>残念だが、全てのxでf(x)は決まってるし、全てのiで、d(s_i)も決まってる
>不特定多数の人が、それぞれ勝手なx、勝手なiを選ぶのであって
>�


396:サの中で当たっている人の確率を求めるとそれぞれ1、99/100となる ピエロ、横レスすまんな(^^ えーと、時枝の前に、まず、>>47の”XOR’S HAMMERの任意関数の数当て解法”をやろう!(>>56に同じ) 1.全てのxでf(x)は決まってるし、代表g(x)も決まってる。一つx0を選んだ段階で、x0以外の全てのf(x)は開示される  (”3)Bob reveals to you the table of values {(x0, f(x0))| x0 ≠ x } of his function on every input except the one you specified”(>>47より)) 2.開示されたx0以外の全てのf(x)の情報により、代表g(x)が選ばれる。f(x)~g(x)(=同値)だから、f(x)とg(x)とは、有限個しか値が異ならない 3.(>>48より)”choose x with uniform probability from [ 0,1 ].”という条件を付与することで、当たる確率1となる タネを明かせば、単純なパズルにすぎない(^^ まあ、小学生のピエロには理解が難しいかな?



397:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/19 13:00:57.08 W1ZiI7BV.net
>>361
ああ、人違いして、すまんかった(^^

398:132人目の素数さん
17/11/19 13:08:13.05 quP2c269.net
>>364
言いたいことがあるならはっきり言ったらどうかね?
今更自演がバレないかと気にしても仕方あるまいに

399:132人目の素数さん
17/11/19 13:08:59.89 quP2c269.net
>>366
間違いを認められないスレ主=ぷ

400:132人目の素数さん
17/11/19 13:12:57.36 quP2c269.net
>>362
ブラウン運動のページを貼るのと確率過程を理解するのは別儀だ
特に理解してないページも片っ端から貼る習性があるスレ主の場合は

401:132人目の素数さん
17/11/19 13:26:00.37 xbpj1BvL.net
>>250
>  要は、x0を1回のみ試行するなら、”uniform probability”ではない!
>  だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
スレ主はまず自分の間違いを誠実に認めろ
それすらできない奴に議論ができるわけないだろ

402:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/19 13:33:40.87 W1ZiI7BV.net
>>356
High level peopleさん
どうも。スレ主です。
>“おまえ”=私ではありませんが何か?
これは失礼(^^
「(そもそも実行不可能だが)」(>>267)の発言主は、ID:ZcXWWwZM のピエロだったか(^^
だが、間違い方が似ている
ピエロのサイコパス性格を抜けば、成りすましと思えるほどだ(^^
が、再度お詫びを致しますm(_ _)m
ところで、
>そりゃあなたがuniform probabilityで0.5を選んだならuniform probabilityですよ。
 ・
 ・
>プレイヤーの戦略がuniform probabilityかどうかを第三者視点で検証しようという問題ではございませんw
って、それ無茶苦茶なロジックだよね。そうじゃなく、”uniform probability”がきちんと担保された手続きで、0.5を選んだならという前提があるはず
そこを飛ばしたら、そこが貴方の理解を超えているからと飛ばしたら、”固定!”とかなんでもできてしまう貴方の似非数学そのものだわ~(^^
つづく

403:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/19 13:34:20.81 W1ZiI7BV.net
>>371 つづき
1.数学の論の進め方に、同値な命題に置き換えるというのがある
2.下記は、同値だ
 命題A:
 ・choose x with uniform probability from [ 0,1 ] 
  ↓
 ・f(x) と g(x) と比較し、f(x) = g(x) ならh(x)=1, f(x) ≠ g(x) ならh(x)=0, なる関数h(x)を定める
  ↓
 ・関数h(x)を区間[0,1]まで積分する。外れが有限で零集合だから、積分値は1。つまり、的中率1
 命題B:
 ・choose x with uniform probability from [ 0,1 ] より
  ↓
 ・x=0からゲームを始め、f(x) と g(x) と比較し、f(x) = g(x) ならh(x)=1, f(x) ≠ g(x) ならh(x)=0, なる関数値h(x)を、x=1まで記録してゆく
  ↓
 ・関数値h(x)がすべて決まる。外れが有限で零集合だから、的中率1
3.命題Aと命題Bとの同値であることは、ほぼ自明。(∵命題Bは、命題Aを単に”ゲーム”という言葉で置き換えたに過ぎない)
4.命題Aと命題Bとが同値である以上、私スレ主の主張”XOR’S HAMMERの関数数当てパズルの種明かし”(>>233&>>245,>>365)になんの問題もない
以上

404:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/19 13:38:23.19 W1ZiI7BV.net
>>360-361 >>368 >>370
それ>>372嫁だな(^^

405:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/19 13:47:40.92 W1ZiI7BV.net
>>369
>ブラウン運動のページを貼るのと確率過程を理解するのは別儀だ
それは正しいな
だが、>>305 ID:ZcXWWwZM (これピエロ(^^ )
>>測度論では、>>1の単純素朴な


406:"連続的試行"なんて扱わない >今一度、確率論の本を開いてみたら?  「では伊藤清「確率論」(岩波基礎数学選書) の何pに書かれてますか  当該箇所を引用してお示しください」 というより、よほどましだろう(^^



407:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/19 13:50:04.47 W1ZiI7BV.net
>>367-368
自演に救いを求めるようになったら、終りだな(^^

408:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/19 13:56:07.95 W1ZiI7BV.net
>>365 追加
>不特定多数の人が、それぞれ勝手なx、勝手なiを選ぶのであって
重箱の隅だが
不特定多数の人で、”uniform probability from [ 0,1 ]”の代用をさせようというのは、不成立だぜ
不特定多数の人は、基本は有限。無理しても、可算無限
対して、”uniform probability from [ 0,1 ]”だからね
代用できないよ(^^

409:132人目の素数さん
17/11/19 14:15:05.67 quP2c269.net
>>375
自演してるお前が言うなw

410:132人目の素数さん
17/11/19 15:17:10.10 xbpj1BvL.net
>>371
> >プレイヤーの戦略がuniform probabilityかどうかを第三者視点で検証しようという問題ではございませんw
>
> って、それ無茶苦茶なロジックだよね。そうじゃなく、”uniform probability”がきちんと担保された手続きで、0.5を選んだならという前提があるはず
uniform probabilityの担保?手続き?
馬鹿じゃねーの。

411:132人目の素数さん
17/11/19 15:18:24.54 xbpj1BvL.net
>>354
> それおまえが
“おまえ”=私ではありませんが何か?
あんたサイコロの確率が分からないと白状した時点で the end ですわ
>>283
> >>250
> >  要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> >  だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>
> それ言ったらお前さんサイコロ振れないぞ。。。

412:132人目の素数さん
17/11/19 15:32:57.58 xbpj1BvL.net
>>250
>  要は、x0を1回のみ試行するなら、”uniform probability”ではない!
>  だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
おいスレ主の馬鹿タレ
>>250は間違いだったと認めるのか?
それとも>>250の通りサイコロを振る回数が1回だったらuniform probabilityじゃないのか??

413:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/19 15:53:18.42 W1ZiI7BV.net
>>380
>それとも>>250の通りサイコロを振る回数が1回だったらuniform probabilityじゃないのか??
1)当然ながら、”uniform probability from [ 0,1 ]”とサイコロのuniform probability (1,2,・・・6)とは異なる
2)イカサマサイコロでは、uniform probability にならない!
3)従って、サイコロのuniform probability (1,2,・・・6)は定義である!(^^
  サイコロのuniform probability (1,2,・・・6)の定義は、それぞれの出目に差が無いということ
3)”uniform probability from [ 0,1 ]”も同じ
  それぞれの出目に差が無いということ
  つまり、各xを均等に1回ずつ数えることに同じ!(^^
QED

414:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/19 15:54:08.25 W1ZiI7BV.net
>>381 訂正
3)”uniform probability from [ 0,1 ]”も同じ
 ↓
4)”uniform probability from [ 0,1 ]”も同じ

415:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/19 16:03:13.98 W1ZiI7BV.net
>>380
まあ
それ>>372嫁だな(^^

416:132人目の素数さん
17/11/19 16:03:42.10 xbpj1BvL.net
>>381
会話になっていない
お前は1回の試行ではuniform probabilityとは言えないと言ったのである
 choose x with uniform probability from [ 0,1 ]
ならばuniform probabilityではなく
 choose x with uniform probability from {0,1,2,3,4,5,6}
ならばuniform probabilityであるという主張は意味不明である
お前の>>250は間違っている
>>283
> >>250
> >  要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> >  だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>
> それ言ったらお前さんサイコロ振れないぞ。。。

417:132人目の素数さん
17/11/19 16:05:21.98 xbpj1BvL.net
>>381
会話になっていない
お前は1回の試行ではuniform probabilityとは言えないと言ったのである
 choose x with uniform probability from [ 0,1 ]
ならばuniform probabilityではなく
 choose x with uniform probability from {1,2,3,4,5,6}
ならばuniform probabilityであるという主張は意味不明である
お前の>>250は間違っている
>>283
> >>250
> >  要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> >  だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>
> それ言ったらお前さんサイコロ振れないぞ。。。

418:132人目の素数さん
17/11/19 16:10:23.47 xbpj1BvL.net
uniform probabilityと言ったらuniform probabilityである
それをどのように実現するかを問題にしているのではない
uniform probabilityの担保?手続き?
意味不明
馬鹿じゃねえの?
>>378
> >>371
> > >プレイヤーの戦略がuniform probabilityかどうかを第三者視点で検証しようという問題ではございませんw
> >
> > って、それ無茶苦茶なロジックだよね。そうじゃなく、”uniform probability”がきちんと担保された手続きで、0.5を選んだならという前提があるはず
>
> uniform probabilityの担保?手続き?
> 馬鹿じゃねーの。

419:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/19 16:25:52.70 W1ZiI7BV.net
>>381-383 補足
一様分布の平均、分散、大数の法則
全て、繰り返し行うことを前提とした話だよ(^^
”サイコロを振る回数が1回だったらuniform probability”は、定義による通り
だが、同様に定義から複数回試行の結果の平均や分散、大数の法則の成立が導かれるってこと!(下記ご参照)(^^
で、uniform probability from [ 0,1 ]について、その導かれる結果の一つが、>>372ってことよ(^^
<参考>
URLリンク(ja.wikipedia.org)
大数の法則
(抜粋)
試行の回数を時刻と見たとき、時刻無限大の極限において時間平均が相平均に一致するという意味で、エルゴード理論の最も単純な数学的定式化(エルゴード定理)のうちのひとつであると言える。

サイコロを繰り返し投げるとき、n 回目に出た目を Xn とする。各Xn は 1 ~ 6 の整数値をそれぞれ 1/6 の確率でとり、その期待値は 3.5 である。また、確率変数列の平均 [Xn] の値は n → ∞ とすれば 3.5 に集中する。このことから n が十分大きければ Xn はそれぞれの値を等しい比率でとり、たとえば 6 回に 1 回の割合で 1 が現れるということがわかる。
大数の法則が成立しないケース
大数の法則は期待値の存在を前提としている。そのため、期待値の存在しない場合に大数の法則を適用することは適切ではない。例えば安定分布において特性指数が α ≦ 1 の場合、期待値は存在しないことから、大数の法則は成立しない。(例:コーシー分布)
(引用終り)
URLリンク(ja.wikipedia.org)
一様分布
URLリンク(mathtrain.jp)
一様分布の平均,分散,特性関数など 高校数学の美しい物語 2015/11/06
URLリンク(ja.wikipedia.org)
連続一様分布
以上

420:132人目の素数さん
17/11/19 16:30:59.64 quP2c269.net
教科書に
「直線Aの・・・」
と書かれてたらスレ主は
「Aが直線であることがきちんと担保された手続きで・・・」
と言いがかりをつけそうw

421:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/19 16:33:21.62 W1ZiI7BV.net
>>384-386
論破されて発狂の図か?(^^
>>387
>お前は1回の試行ではuniform probabilityとは言えないと言ったのである
おまえ、そこで嵌まってんだよ(^^
そに気付よ
おの言った意図は、>>331に書いてあるよ
問題は、(>>47) XOR’S HAMMER のパズルの数学トリックを、どう理解するかだ
”1回の試行で uniform probability”と考えて
そこで思考停止すると、ハマリ!(^^

422:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/19 16:35:05.85 W1ZiI7BV.net
>>389 訂正
そに気付よ
 ↓
そこに気付よ
おの言った意図は、>>331に書いてあるよ
 ↓
おのれ言った意図は、>>331に書いてあるよ

423:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/19 16:41:21.25 W1ZiI7BV.net
>> 389 補足
>”1回の試行で uniform probability”と考えて
>そこで思考停止すると、ハマリ!(^^
すでに書いたが、普通の確率論で、一様分布の平均、分散、大数の法則
全て、繰り返し行うことを前提とした話だよ(^^
1回の試行で、思考停止すると、ハマリ!(^^
だから、一度、”1回の試行で uniform probability”を外さないと、(>>47) XOR’S HAMMER のパズルの数学トリックは解けないってことさ(^^
>>387 嫁!

424:132人目の素数さん
17/11/19 16:41:46.84 xbpj1BvL.net
>>387
話題そらし乙

お前は1回の試行ではuniform probabilityとは言えないと言ったのである
 choose x with uniform probability from [ 0,1 ]
ならば[0 ,1]からuniform probabilityでxを選ぶという意味であり、
 choose x with uniform probability from {1,2,3,4,5,6}
ならば{1,2,3,4,5,6}からuniform probabilityでxを選ぶという意味である
試行の回数が1回ならばuniform probabilityではないというお前の主張は誤りである
よってお前の>>250は間違っている
この間違いをお前が認めない限り会話は成立しない

>>283
> >>250
> >  要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> >  だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>
> それ言ったらお前さんサイコロ振れないぞ。。。

425:132人目の素数さん
17/11/19 17:05:11.59 dOlW3MoH.net
おっちゃんです。
伊藤清「確率論」(岩波基礎数学選書)
は、離散的な確率変数を持つ標本空間の事象を扱うことから始まって、
途中から測度論を丁寧に導入している。サイコの事象は最初の方に出て来るね。
区間 [0,1] において、xが有理数のとき不連続、x無理数のとき微分可能
となるような[0,1] で定義された関数を f(x) を挙げる問題がスレ主は解けなかったか。
ヒントな。f(x) はxが無理数のときは定数値を取る。あと、有理数近似の理論は用いるかな。
使うであろう有理数近似の命題を導くのに微分積分は殆ど必要ないんだが。
まあ、ここまで書けば分かるだろう。

426:132人目の素数さん
17/11/19 17:09:36.04 dOlW3MoH.net
>xが有理数のとき f(x) は不連続、xが無理数のとき f(x) は微分可能となるような…
な。

427:132人目の素数さん
17/11/19 19:18:02.88 quP2c269.net
>だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
じゃあまずは0の次の実数を選んで下さい、全部均等に実施するんですよね?

428:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/19 20:44:27.59 W1ZiI7BV.net
>>392
>よってお前の>>250は間違っている
>この間違いをお前が認めない限り会話は成立しない
なにを屁理屈をうだうだと
笑えるよ
腐ってもここは数学板だ。SNSじゃないよ。会話など不要。あんたが正しい証明を1本書けば良いだけだ
おっと、この板に書いてもだれも読まないよ。PDFでA4で10ページなどの原稿を、このバカ板で展開したら数十ページを超えて読めたものじゃないぜ(^^
どっかの学会誌にでも、arxivにでも投稿してくれ
投稿がオープンになったら、このスレに報告してくれ�


429:B議論はそれからにしようぜ 結論を言っておくと、「あんたの間違いだよ」!! 会話が成立しない原因は、自分の誤りを認められないからだよ!! あんたの間違った会話を認めろだと? そんな会話はお断りだよ!! なお、ここはおれの立てたスレだということを忘れないでくれ 間違った議論を続けたければ、自分でスレ立てしなよ。あるいは、スレ28は自分が立てたんだろ? それにスレ43も空いているぞ。そっちを使え!!



430:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/19 20:44:58.42 W1ZiI7BV.net
>>393-394
おっちゃん、どうも、スレ主です。
>伊藤清「確率論」(岩波基礎数学選書)
>は、離散的な確率変数を持つ標本空間の事象を扱うことから始まって、
>途中から測度論を丁寧に導入している。サイコの事象は最初の方に出て来るね。
情報ありがとう!(^^
>区間 [0,1] において、xが有理数のとき不連続、x無理数のとき微分可能
>となるような[0,1] で定義された関数を f(x) を挙げる問題がスレ主は解けなかったか。
関数を f(x) を挙げるだけなら、出来た(>>153の通り)
が、証明はできなかったね(^^
ピエロのアップしたPDF(下記)に証明があるが、下記無理数を(a)連分数展開可能な無理数の点と、(b)そうでない無理数で微分出来ない点に分け、
(a)は微分可能で、”(a) and (b) are both of them un-countable.”だと。まあ、これは私の手では独力では証明できないと悟った
事実、筆者もP2 "Actually, a big part of this study has already
been done in the literature; see, for instance, [2, 3, 6, 7]. Here we present
some results that are already known (usually whith a dierent proof), and
some that seem to be new."とあって、何人ものプロ数学者の数十年の積み上げ成果だから、おれなんかがちょっと考えて解ける問題じゃないね
知識として、知っているか知らないかだ
なお、和文PDFかURLがないか探したが、見つからなかった(^^
なので、これは結構、日本では”ハナタカ”のような気がするね(^^
つづく

431:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/19 20:45:33.01 W1ZiI7BV.net
>>397 つづき
<引用>
URLリンク(www.unirioja.es)
DIFFERENTIABILITY OF A PATHOLOGICAL FUNCTION,
DIOPHANTINE APPROXIMATION,
AND A REFORMULATION
OF THE THUE-SIEGEL-ROTH THEOREM
JUAN LUIS VARONA
This paper has been published in Gazette of the Australian Mathematical Society, Vol-
ume 36, Number 5, November 2009, pp. 353{361.
Received 29 February 2008; accepted for publication 6 October 2009.
(抜粋)
ここに
fν(x)
=0 if x ∈ R - Q(無理数)
=1/q^ν if x = p/q ∈ Q, irreducible (有理数で既約分数)

Theorem 1. For ν > 2, the function fν is discontinuous (and consequently not differentiable) at the rationals, and continuous at the irrationals.
With respect the differentiability, we have:
(a) For every irrational number x with bounded elements in its continued fraction expansion, fν is differentiable at x.
(b) There exist infinitely many irrational numbers x such that fν is not differentiable at x.
Moreover, the sets


432:of numbers that fulfill (a) and (b) are both of them un-countable. (引用終り)



433:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/19 20:46:15.07 W1ZiI7BV.net
>>395
 >>352
 ”「実数のパラメータt」は、主に時間を想定している”
 だから、「次の瞬間」ということだな(^^

434:132人目の素数さん
17/11/19 20:53:09.13 oiYRwEo1.net
エロガロア
射精の意味も曖昧だったんじゃないかな

435:132人目の素数さん
17/11/19 21:11:28.33 xbpj1BvL.net
>>396
> 結論を言っておくと、「あんたの間違いだよ」!!
> 会話が成立しない原因は、自分の誤りを認められないからだよ!!
>
> あんたの間違った会話を認めろだと?
> そんな会話はお断りだよ!!
>
> なお、ここはおれの立てたスレだということを忘れないでくれ
> 間違った議論を続けたければ、自分でスレ立てしなよ。あるいは、スレ28は自分が立てたんだろ? それにスレ43も空いているぞ。そっちを使え!!

怒り発狂するようでは数学はできない
まずは冷静になりましょう

お前は1回の試行ではuniform probabilityとは言えないと言ったのである
 choose x with uniform probability from [ 0,1 ]
ならば[0 ,1]からuniform probabilityでxを選ぶという意味であり、
 choose x with uniform probability from {1,2,3,4,5,6}
ならば{1,2,3,4,5,6}からuniform probabilityでxを選ぶという意味である
試行の回数が1回ならばuniform probabilityではないというお前の主張は誤りである
よってお前の>>250は間違っている
この間違いをお前が認めない限り他人との議論は成立しない
>>283
> >>250
> >  要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> >  だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>
> それ言ったらお前さんサイコロ振れないぞ。。。

436:132人目の素数さん
17/11/19 21:15:18.24 quP2c269.net
>>399
>だから、「次の瞬間」ということだな(^^
次の瞬間とは?文系ですか?数値で答えて下さい

437:132人目の素数さん
17/11/19 21:28:16.13 xbpj1BvL.net
注意欠陥・多動性障害(wikiより引用)
かつては子供だけの症状であり、成人になるにしたがって改善されると考えられていたが、近年は大人になっても残る可能性があると理解されている[10]。
その場合は多動ではなく、感情的な衝動性(言動に安定性がない、順序立てた考えよりも感情が先行しがち、論理が飛躍した短絡的な結論に至りやすい)や
注意力(シャツをズボンから出し忘れる、シャツをズボンに入れ忘れる、ファスナーを締め忘れるといったミスが日常生活で頻発する、など)や集中力の欠如が多い[5]。
----
感情的な衝動性(言動に安定性がない、順序立てた考えよりも感情が先行しがち、論理が飛躍した短絡的な結論に至りやすい)
----
[感情が先行しがち]
>>396
> 結論を言っておくと、「あんたの間違いだよ」!!
> 会話が成立しない原因は、自分の誤りを認められないからだよ!!
>
> あんたの間違った会話を認めろだと?
> そんな会話はお断りだよ!!
>
> なお、ここはおれの立てたスレだということを忘れないでくれ
> 間違った議論を続けたければ、自分でスレ立てしなよ。あるいは、スレ28は自分が立てたんだろ? それにスレ43も空いているぞ。そっちを使え!!

[論理が飛躍した短絡的な結論]
>>283
> >>250
> >  要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> >  だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>
> それ言ったらお前さんサイコロ振れないぞ。。。

438:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/19 22:08:39.76 W1ZiI7BV.net
>>401 >>403
 >>8 ”<数学ディベート>について”嫁
 あなたのは、数学ではない
 似非数学であり、数学ごっこディベートにすぎないよ
 数学ごっこディベートは、お断りだ
 「ぷふ」さんに遊んで貰え!

439:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/19 22:09:08.88 W1ZiI7BV.net
>>402
 その質問は、πは何桁の小数ですかと聞く如し(^^

440:132人目の素数さん
17/11/19 22:27:36.65 quP2c269.net
>>405
>その質問は、πは何桁の小数ですかと聞く如し(^^
はあ?何を訳の分からない事言ってるんですか?
>要は、x0を1回のみ試行するなら、”uniform probability”ではない!
>だから、[ 0,1 ]を全部”均等”に実施するのだ!
と言ったのはあなたですよ?全部均等に実施するには少なくとも0の次を実施しないといけないですよね?
その実数を聞いてるだけなんですが?それとも
>だから、[ 0,1 ]を全部”均等”に実施するのだ!
は間違いだったと認めるんですか?はっきりして下さい、訳の分からないレスで誤魔化さないで下さい

441:132人目の素数さん
17/11/19 22:43:49.00 xbpj1BvL.net
注意欠陥・多動性障害(wikiより引用)
かつては子供だけの症状であり、成人になるにしたがって改善されると考えられていたが、近年は大人になっても残る可能性があると理解されている[10]。
その場合は多動ではなく、感情的な衝動性(言動に安定性がない、順序立てた考えよりも感情が先行しがち、論理が飛躍した短絡的な結論に至りやすい)や
注意力(シャツをズボンから出し忘れる、シャツをズボンに入れ忘れる、ファスナーを締め忘れるといったミスが日常生活で頻発する、など)や集中力の欠如が多い[5]。
----
感情的な衝動性(言動に安定性がない、順序立てた考えよりも感情が先行しがち、論理が飛躍した短絡的な結論に至りやすい)
----
[感情が先行しがち]
>>396
> 結論を言っておくと、「あんたの間違いだよ」!!
> 会話が成立しない原因は、自分の誤りを認められないからだよ!!
>
> あんたの間違った会話を認めろだと?
> そんな会話はお断りだよ!!
>
> なお、ここはおれの立てたスレだということを忘れないでくれ
> 間違った議論を続けたければ、自分でスレ立てしなよ。あるいは、スレ28は自分が立てたんだろ? それにスレ43も空いているぞ。そっちを使え!!

[論理が飛躍した短絡的な結論]
>>404
>  あなたのは、数学ではない
>
>  似非数学であり、数学ごっこディベートにすぎないよ
>>283
> >>250
> >  要は、x0を1回のみ試行するなら、”uniform probability”ではない!
> >  だから、[ 0,1 ]を全部”均等”に実施するのだ!と(もし、別の解釈が可能なら仰ってください)
>
> それ言ったらお前さんサイコロ振れないぞ。。。

442:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/20 06:47:49.97 ZSJdGnU3.net
>>401
<注意欠陥・多動性障害>
・数学の解答において、与えられた問題の条件で、使っていない条件があれば、大概その解答は間違いだ
・uniform probabilityという与えられた問題の条件で、その解答が、1回の試行で単に”uniform probabilityを満たしているから”の一言で済ませて正解と言えるのか?
・1回の試行では、与えられたuniform probabilityという与えられた問題の条件を使った解答とは言えないだろう
・なぜならば、uniform probability以外の条件でどうなるかについて、その解答ではなにも言えず、uniform probability以外の条件でも同じ結論に達してしまうからである
・よって、その解答が、1回の試行で単に”uniform probabilityを満たしているから”の一言で済ませて、”これで正解”と思っているのは、”使っていない条件”があるに等しく、これ<注意欠陥・多動性障害>だろう
QED
つづく

443:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/20 06:51:14.41 ZSJdGnU3.net
>>408 つづき
<[論理が飛躍した短絡的な結論]>
参考:>>194-196 >>243 >>250より
・確かに、数学では、変数が多いときに、例えば他


444:の変数を固定して偏微分を考えることがある ・だが、偏微分だけで済ませて、”終わり”では大間違い ・もともとは、全て変数だったとすれば、便法に変数固定の偏微分を使ったとしても、最後は全変数への考究が必要だ ・”uniform probability”でサイコロを1回、出目は2、結果は丁(偶数)。よって「結論:”uniform probability”でサイコロを1回振れば、結果は丁(偶数)」という誤りが導かれる如し ・この理屈が分らないHigh level peopleは、自分達の<[論理が飛躍した短絡的な結論]>に気付かない (参考) https://ja.wikipedia.org/wiki/%E5%85%A8%E5%BE%AE%E5%88%86 全微分 https://ja.wikipedia.org/wiki/%E5%81%8F%E5%BE%AE%E5%88%86 偏微分 (抜粋) 数学の多変数微分積分学における偏微分(へんびぶん、partial derivative)は、多変数関数に対して一つの変数のみに関する(それ以外の変数は定数として固定する(英語版))微分である(全微分では全ての変数を動かしたままにするのと対照的である)。 (引用終り) つづく



445:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/20 06:51:59.13 ZSJdGnU3.net
>>409 つづき
・数学の解答において、与えられた問題の条件で、使っていない条件があれば、大概その解答は間違い
・もともとは、全て変数だったとすれば、便法に変数固定の偏微分を使ったとしても、最後は全変数への考究が必要だ
・ここらの、”数学をする上での基本的訓練が出来ていない方々”との会話は、大変ですよ
以上
(^^

446:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/20 06:54:08.81 ZSJdGnU3.net
>>406
>>だから、[ 0,1 ]を全部”均等”に実施するのだ!
>と言ったのはあなたですよ?全部均等に実施するには少なくとも0の次を実施しないといけないですよね?
>その実数を聞いてるだけなんですが?
URLリンク(ja.wikipedia.org)
ゼノンのパラドックス
(抜粋)
目次
2 運動のパラドックス
2.3 飛んでいる矢は止まっている
3 運動のパラドックスの数学的解説
3.3 飛んでいる矢は止まっている
飛んでいる矢は止まっている
この言から、ゼノンも「時間が瞬間より成る」を前提としていると解される。瞬間においては矢は静止している。どの瞬間においてもそうである。という事は位置を変える瞬間はないのだから、矢は位置を変えることはなく、そこに静止したままである。ゼノンの意が単純にこうであったのかは確定的な事ではない。
運動のパラドックスの数学的解説
飛んでいる矢は止まっている
数学的に見れば、瞬間においては運動も静止もないと見ることも可能であるが、同時に、運動方程式は瞬間における速度を示し得るのであって、言葉の定義の問題に過ぎない。
しかし、前者の否定は成り立たない。時間が瞬間より成るとしても、運動は否定され得ない。時間が連続体であれば、時間が瞬間=点よりなり、矢が瞬間=点においては静止しているとしたとしても、動くことは出来る。近代解析学においては、ゼノンの結論は否定されるが、アリストテレスの論議も否定される。
(引用終り)
つづく

447:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/20 06:55:34.73 ZSJdGnU3.net
>>411 つづき
<運動のパラドックス>
ゼノンは、言った"区間[0,1]において、スタート地点0から一輪車が転がるとき、0の次に車輪が接する点が決められないから、一輪車は運動できない”と
あなたは、ゼノンです
(^^
QED

448:132人目の素数さん
17/11/20 08:20:29.60 qSwVCv83.net
>>411 >>412
>あなたは、ゼノンです
はあ?何を訳の分からない事言ってるんですか?
>要は、x0を1回のみ試行するなら、”uniform probability”ではない!
>だから、[ 0,1 ]を全部”均等”に実施するのだ!
と言ったのはあなたですよ?全部均等に実施するには少なくとも0の次を実施しないといけないですよね?
その実数を聞いてるだけなんですが?それとも
>だから、[ 0,1 ]を全部”均等”に実施するのだ!
は間違いだったと認めるんですか?はっきりして下さい、訳の分からないレスで誤魔化さないで下さい

449:132人目の素数さん
17/11/20 08:57:14.20 B6zirv1l.net
>>408
> ・uniform probabilityという与えられた問題の条件で、その解答が、1回の試行で単に”uniform probabilityを満たしているから”の一言で済ませて正解と言えるのか?

おまえはサイコロの確率が試行回数に依存すると本気で思っているのか?

> ・1回の試行では、与えられたuniform probabilityという与えられた問題の条件を使った解答とは言えないだろう
> ・なぜならば、uniform probability以外の条件でどうなるかについて、その解答ではなにも言えず、uniform probability以外の条件でも同じ結論に達してしまうからである

uniform probabilityを考える問題でuniform probability以外を考えたらバッテンです
サイコロを引け、と書いてあるのにくじを引く問題を考えてしまったら算数のテストはバッテンです

450:132人目の素数さん
17/11/20 09:04:40.53 B6zirv1l.net
>>408
> ・uniform probabilityという与えられた問題の条件で、その解答が、1回の試行で単に”uniform probabilityを満たしているから”の一言で済ませて正解と言えるのか?
---------
[小学生の算数のテスト]
サイコロを1回振って1の目が出る確率は?
[スレ主の解答]
各目が等確率1/6で出るからといって1/6が正解とは言えない

451:132人目の素数さん
17/11/20 09:10:31.61 B6zirv1l.net
>>409
> ・”uniform probability”でサイコロを1回、出目は2、結果は丁(偶数)。よって「結論:”uniform probability”でサイコロを1回振れば、結果は丁(偶数)」という誤りが導かれる如し
> ・この理屈が分らないHigh level peopleは、自分達の<[論理が飛躍した短絡的な結論]>に気付かない

[小学1年生の算数のテスト]
サイコロを振って出る目を書きなさい
[スレ主の解答]
サイコロを1回振って出た目が偶数であれば、サイコロを1回振って出る目は偶数である

452:132人目の素数さん
17/11/20 09:25:14.12 B6zirv1l.net
算数のテスト解答編
>>415
> [小学生の算数のテスト]
> サイコロを1回振って1の目が出る確率は?
>
> [スレ主の解答]
> 各目が等確率1/6で出るからといって1/6が正解とは言えない
[正解]
1/6
(先生のコメント)
スレ主君は難しいことを考えるんだね!
勉強がんばろう!

>>416
> [小学1年生の算数のテスト]
> サイコロを振って出る目を書きなさい
>
> [スレ主の解答]
> サイコロを1回振って出た目が偶数であれば、サイコロを1回振って出る目は偶数である
[正解]
1, 2, 3, 4, 5, 6
(これら6通りが等確率)
(先生のコメント)
スレ主君は不思議なサイコロを考えているのかな?
そういうサイコロがあったら楽しそうだね!
勉強がんばろう!

>>408
> ・uniform probabilityという与えられた問題の条件で、その解答が、1回の試行で単に”uniform probabilityを満たしているから”の一言で済ませて正解と言えるのか?
>>409
> ・”uniform probability”でサイコロを1回、出目は2、結果は丁(偶数)。よって「結論:”uniform probability”でサイコロを1回振れば、結果は丁(偶数)」という誤りが導かれる如し
> ・この理屈が分らないHigh level peopleは、自分達の<[論理が飛躍した短絡的な結論]>に気付かない

453:132人目の素数さん
17/11/20 11:35:21.45 Brtx3QWc.net
>>397-398
おっちゃんです。
>関数を f(x) を挙げるだけなら、出来た(>>153の通り)
>が、証明はできなかったね(^^
残念でした。私が考えていた f(x) は>>153の関数ではございません。最初に想定していた
>区間 [0,1] において、xが有理数のとき不連続、xが無理数のとき微分可能
>となるような[0,1] で定義された関数 f(x) を挙げる問題
つまり本を正せば、>>75
>Q3. [0,1]上の有理数で不連続、無理数で微分可能(当然連続)な関数を1つ示せ
というのは、
1):実関数 f(x) は閉区間 I=[0,1] を定義域とし、
2):任意の点 x=p/q∈Q∩I (p、qは互いに素) で f(p/q) は不連続で、
3):任意の点 x∈(R\Q)∩I で f(x) は微分可能である。
以上の1)、2)、3)の3条件を満たすような実関数 f(x) を挙げてε-δで示せ
というモノだったんだよ。>>75はそういう意味で出題されていたとも読み取れる。
条件2)や条件3)の「任意の」の部分を「或る」に変えたら
少なくともこの話よりは短く簡単になって、>>153で話は終了になる。
それに、>>153で話が済むなら、小平解析入門にも似たような話が書かれている。
11/14(火) の ID:jtNc+3xe は私ではない。スレ主の自演だろう。

454:132人目の素数さん
17/11/20 11:54:12.59 Brtx3QWc.net
>>397-398
まあ、>>418で私が書いた「>>153」は「>>146」とした方が適切だろうな。

455:ID:B6zirv1l
17/11/20 12:19:03.53 Wmx9Mde1.net
>>414
> サイコロを引け、と書いてあるのにくじを引く問題を考えてしまったら算数のテストはバッテンです
いけね。サイコロは引けねえやw

456:132人目の素数さん
17/11/20 14:27:38.04 sVbA75bK.net
>区間 [0,1] において、xが有理数のとき不連続、xが無理数のとき微分可能
>となるような[0,1] で定義された関数 f(x) を挙げる問題
このような関数は存在しないことが
URLリンク(math.stackexchange.com)
に書いてある。リンク先では f:R → R の場合を考えている。
f:R → R の不連続点の集合が R において稠密ならば、
f の微分不可能点の集合は「第二類集合」を部分集合として持つらしい
(このことから、題意の関数が存在しないことが即座に従う)。
面倒くさいからちゃんと読んでないけど、もしリンク先の証明が正しいなら、
f:[0,1] → R の場合も、同じ手法によって「存在しない」ことが証明できるでしょう。
おっちゃんは何やら「存在する」と言っているようだが、
例のごとく、おっちゃんクオリティで盛大に間違ってるんだろう。

457:132人目の素数さん
17/11/20 16:45:28.40 sVbA75bK.net
>>421のリンク先の証明は個人的には すんなり頭に入ってこないので、
微分可能な点の方から攻める方針でやってみたら、次の定理が得られた。
定理:f:R → R に対して、B_f={ x∈R|limsup[y→x]|(f(y)-f(x))/(y-x)|<+∞ } と置く。
もし R-B_f が高々可算無限個の疎な閉集合の和で被覆できるならば、f はある開区間の上で
リプシッツ連続である。

この定理を使うと、f:R → R であって、「xが有理数のとき不連続、xが無理数のとき微分可能」
となるものは存在しないことが即座に分かる。一応やってみると、そのような関数 f が存在したとすると、
R-Q = 無理数全体 = (fの微分可能点全体) ⊂ B_f
となるので、
R-B_f ⊂ Q = ∪[p∈Q] { p } …(1)
となる。(1)の右辺は疎な閉集合の可算和だから、上の定理が使えて、f はある開区間(a,b)の上で
リプシッツ連続になる。特に、(a,b)の上で連続になる。QはR上で稠密だから、x∈(a,b)∩Qが取れる。
仮定から、fは点xで不連続であるが、しかしx∈(a,b)より、fは点xで連続であり、矛盾する。

458:132人目の素数さん
17/11/20 18:28:51.02 Brtx3QWc.net
>>421-422
あ、まだ詳細な証明を書いて確認してはいなかったんだけど、例えば
f(0)=f(1)=1、
任意の既約な有理数 x=p/q∈(0,1) に対して f(p/q)=p/q、
超越数aを任意に取り任意の無理数 x∈(0,1) に対して f(x)=a
というようにして区間 [0,1] で定義された実関数 f(x) を考えていたんだけど、x=0,1 のときはともかく、
x∈(0,1 )が無理数、b=p/q∈(0,1) が有理数のときも |(f(x)-f(b))/(x-b)|=1 となって間違いなのか。
3以上の任意の正整数nに対して
|( f(x)-f(b) )/(x-b)|=|(a-p/q)|/|(a-p/q)|<1/(q^n|a-p/q|)
を満たす既約分数 b=p/q∈(0,1) は可算無限個あって
分母の正整数 q>p も当然可算無限個あるから、直観的に条件を満たしているかと思っていたんだけど、
実際は可算無限個の既約分数 p/q∈(0,1) に対して q^n|a-p/q|<1 なのか。
だけど正整数 n≧3 を任意に取って a→+∞ としても、q^n|1-p/(aq)|<1/a を満たす
既約有理数数 b=p/q∈(0,1) が可算無限個あるというのが何か直観に反するな。
1

459:132人目の素数さん
17/11/20 18:32:31.63 Brtx3QWc.net
あ、最後の行に「1」が付いていた。

460:132人目の素数さん
17/11/20 18:45:26.97 Brtx3QWc.net
今日はおっちゃん寝る。

461:132人目の素数さん
17/11/20 18:53:26.23 sVbA75bK.net
>>423
>任意の既約な有理数 x=p/q∈(0,1) に対して f(p/q)=p/q、
>超越数aを任意に取り任意の無理数 x∈(0,1) に対して f(x)=a
それだと任意の点で不連続だろ。
・ xが有理数のときは f(x)=x
・ xが無理数のときは f(x)=a
と定義しているのと同じことだから、y=x, y=a という2本の直線が
x の値に応じて交互に出現しているようなグラフになる。
どんな間違い方をしているのかと思えば、レベルが低すぎて唖然とするわ。
・ f(p/q)=1/q
・ xが無理数のときは f(x)=0
という、出発点となる例よりも大幅に劣化してるじゃん。

462:132人目の素数さん
17/11/20 19:16:54.16 sVbA75bK.net
いや、a の値によっては、1点でのみ連続になり得るか。
・ a<0 または a>1 ならば、f は[0,1]上で不連続。
・ 0<a<1 ならば、f は[0,1]上のうち x=a でのみ連続。
・ どの場合でも、f は[0,1]上の各点で全く微分できない。
いずれにしても、目標の関数からは程遠く、スレ主が
>>397-398で引っ張ってきた例の方が遥かにマシという。

463:132人目の素数さん
17/11/20 19:52:11.35 qSwVCv83.net
>>411 >>412
>ゼノンは、言った"区間[0,1]において、スタート地点0から一輪車が転がるとき、0の次に車輪が接する点が決められないから、一輪車は運動できない”と
0の次に車輪が接する点が決められなくとも一輪車は運動できる
しかし、[ 0,1 ]を全部”均等”に試行するには、都度実数を決めなければ試行できない
よってゼノンのパラドックスは何の論拠にもなっておらず、>>411 >>412はナンセンスである

464:132人目の素数さん
17/11/21 04:16:46.58 cl7UYlaS.net
おっちゃんです。
あれ???
計算間違いしていた。

465:132人目の素数さん
17/11/21 04:23:26.58 cl7UYlaS.net
正整数nと、超越数 a∈I=(0,1) とを任意に取る。
任意の既約な有理数 x=p/q∈(0,1) に対して f(p/q)=p/q、 任意の無理数 x∈(0,1) に対して f(x)=a
というようにして区間 I=(0,1) で定義された実関数 f(x) を考える。
J={ p/q∈I | |f(a)-f(b)|=|a-p/q)|<1/q^n, (p,q は互いに素) } とおく。
既約有理数 b=p/q∈J を任意に取ると、p/q に対して或る正整数mが存在して、
1=|( f(a)-f(b) )/(a-b)|<1/(q^n|a-p/q|)<m で、1/(m・q^n)<|a-p/q|<1/q^n となる。
また、p/q の分母qと分子pについて q>p≧1 で、Jは可算無限集合だから、
Jの既約有理数 p/q についての分母qに上限は存在しないと同時に下限が存在する。
従って、或る正整数 q≧2 が存在して、k≧q のとき、任意の k>p≧1 なる高々有限個の
既約有理数 p/k∈J に対して 1/k^{n+1}<|a-p/k|<1/k^n となる。
故に、任意の正整数nと超越数 a∈I=(0,1) とに対して、或る正整数 q≧2 が存在して、
k≧q のとき、任意の k>p≧1 なる高々有限個の既約有理数 p/k∈J に対して 1/k^{n+1}<|a-p/k|<1/k^n となる。
故に、任意の正整数nと超越数 a∈I=(0,1) とに対して、可算無限個の既約有理数 p/q∈J に対して 1/q^{n+1}<|a-p/q|<1/q^n。

466:132人目の素数さん
17/11/21 04:26:24.42 cl7UYlaS.net
(>>430の続き)
逆に、任意の正整数nに対して、可算無限個の既約有理数 p/q∈I=(0,1) q>p≧1 に対して 1/q^{n+1}<|a-p/q|<1/q^n とする。
このとき、a∈I=(0,1) が実代数的数とする。aの最小多項式の次数をnとする。
|a-p/q|≦1/q^{n+1}<1/q^n なる既約有理数 p/q∈(0,1) (q>p≧1) は高々有限個存在するから、
|a-p/q|≧1/q^n なる既約有理数 p/q∈I=(0,1) (q>p≧1) は可算無限個存在する。
従って、|a-p/q|<1/q^n≦|a-p/q| なる既約有理数 p/q∈I=(0,1) (q>p≧1) が存在して矛盾する。
背理法が適用出来るから、任意の正整数nに対して、可算無限個の既約有理数 p/q∈I=(0,1) q>p≧1 に対して
1/q^{n+1}<|a-p/q|<1/q^n なる実数 a∈I=(0,1) は超越数となる。
故に J⊂I から、実数 a∈I=(0,1) について、aが超越数なるための必要十分は、任意の正整数nに対して
可算無限個の既約有理数 p/q∈I=(0,1) q>p≧1 に対して 1/q^{n+1}<|a-p/q|<1/q^n となることである。
だけどこれ、知られているよな。

467:132人目の素数さん
17/11/21 04:49:56.05 cl7UYlaS.net
あっ、a>0 のときは>>423に計算間違いはなかったか。
a<0 のときが計算間違いか。
まあ、昨日考えていたあの問題は考え直しだ。

468:132人目の素数さん
17/11/21 05:26:39.15 X9h/AUBd.net
>>430-431
もはや反応するのもバカらしいけど、お前は一体何の話をしてるんだ。
f の話をしろよ。お前がそこで書いてることは f と何の関係もないじゃん。
何で結論が
>実数 a∈I=(0,1) について、aが超越数なるための必要十分は、任意の正整数nに対して
>可算無限個の既約有理数 p/q∈I=(0,1) q>p≧1 に対して 1/q^{n+1}<|a-p/q|<1/q^n となることである。
になってるんだよ。これでは「 実数 a 」に関する議論であって、
f の不連続性とか微分可能性とかの話になってないじゃん。
>>430にしても、一見すると f の話をしているように見えて、
実際には a の話になっていて、f の話を全くしていない。
しかも、お前が考えている f は [0,1]上のどの点でも微分不可能で、
f が連続になる点も高々1点しか存在しない。問題外。
スレ主が引っ張ってきた関数の方が遥かにマシ。
根本的には、そもそも件の f は「存在しない」のだから、これ以上考えても無駄w

469:132人目の素数さん
17/11/21 05:34:29.24 X9h/AUBd.net
ところで、おっちゃんが論文を書くという話には
密かに期待してるんだが、どうなったの?
まさか口先だけで何も行動してないわけでは無いよな?
tex の勉強を始めたという書き込みは見た覚えがあるが、
その後どうなったんだ?

470:132人目の素数さん
17/11/21 05:37:50.56 cl7UYlaS.net
>>433
>何で結論が
>
>>実数 a∈I=(0,1) について、aが超越数なるための必要十分は、任意の正整数nに対して
>>可算無限個の既約有理数 p/q∈I=(0,1) q>p≧1 に対して 1/q^{n+1}<|a-p/q|<1/q^n となることである。
>
>になってるんだよ。これでは「 実数 a 」に関する議論であって、
>f の不連続性とか微分可能性とかの話になってないじゃん。
昨日のレスを見直しているうちに思い付いたから書いただけ。
>>432に書いたように、fの微分可能性や不連続性の話は後でな。

471:132人目の素数さん
17/11/21 05:51:29.58 cl7UYlaS.net
>>434
あ~、TeX という代物には記号ごとに打つべき記号列の決まりがあったり、
文字を整えるのに却って時間がかかることがあったりして、
覚えることがあって書くのに時間がかかることになって、面倒臭いことがあるんだよ。
美文書作成入門の最新版は分厚いね。
まあ、こっちは有名ジャーナルに投稿するつもりだし、慌ててする気はない。
慌てると却って怪我の本になる。

472:132人目の素数さん
17/11/21 06:10:14.08 X9h/AUBd.net
>>435
>>432に書いたように、fの微分可能性や不連続性の話は後でな。
後でも何も、件の f は「存在しない」のだから、これ以上考えても無駄。
無理やり話を続けるなら、微分可能な点がなるべく多いような具体例を
考えるという話は残っているが、スレ主の引っ張ってきた関数なら
ある程度の分量で微分可能な点が存在しているので、
これも実質的には終わっている。
つまり、この話は もうやることが無いw

473:132人目の素数さん
17/11/21 06:20:39.68 X9h/AUBd.net
>>436
>あ~、TeX という代物には記号ごとに打つべき記号列の決まりがあったり、
>文字を整えるのに却って時間がかかることがあったりして、
>覚えることがあって書くのに時間がかかることになって、面倒臭いことがあるんだよ。
「 tex の勉強に苦戦していて全く進んでません」と言ってるようにしか見えないな。
論文を書くと宣言してから数カ月たってるはずだが、まだスタートラインにも経ってないわけだ。
本当にレベルの低いところを彷徨ってばかりだな。ガッカリだわーーーーーーー。
論文のフォーマットなんて雑誌ごとにテンプレートが用


474:意されてることが ほとんどなんだから、こちらで意識すべき整形ポイントは1つも無いし、 「 tex を勉強する」なんて意気込まなくても普通に論文の準備はできるはずなんだけどなあ。 しかも、厳密な整形作業は雑誌側の仕事なんだぞ。つまり、もしアクセプトされたら、 雑誌側が用意した人員が厳密な整形作業をやるんだぞ。何を難しく構えているんだ おっちゃんは。



475:132人目の素数さん
17/11/21 06:24:51.09 cl7UYlaS.net
>>437
フーン、私も>>421のサイトを詳しく読んでおらずよく分からないが、
>区間 [0,1] において、xが有理数のとき不連続、xが無理数のとき微分可能
>となるような[0,1] で定義された関数 f(x)
自体が存在しなかった訳か。

476:132人目の素数さん
17/11/21 06:26:52.24 X9h/AUBd.net
ちなみに、雑誌側が用意したテンプレートで独自に定義されている命令群に沿って
論文を書かなければならないこともあるし、そもそも tex の命令系統自体が
最初からクソの塊なので、「 tex の勉強 」などというものは基本的に時間の無駄であるw
tex で文書を書くときの基本的な流れさえ理解できれば十分。
おっちゃんに本当に必要なのは、「 tex の勉強」という漠然とした行為などではなく、
さっさと投稿したい雑誌のサイトに行って投稿規定をくまなく読んで、
テンプレートをダウンロードして いきなり実践的に論文を書き上げることである。
「慌てる必要はない」などと後ろ向きな姿勢になってる時点で問題外。
論文を書き上げるのは慌ててやっていいんだよ。
慌てちゃいけないのは その後の「推敲」と「投稿」だよ。
数か月も経ってるのに まだ書いてすらいないのなら、問題外だよ。

477:132人目の素数さん
17/11/21 06:34:03.87 cl7UYlaS.net
>>438
>「 tex の勉強に苦戦していて全く進んでません」と言ってるようにしか見えないな。
>論文を書くと宣言してから数カ月たってるはずだが、まだスタートラインにも経ってないわけだ。
>本当にレベルの低いところを彷徨ってばかりだな。ガッカリだわーーーーーーー。
私には余り期待しなくてもよい。期待されると却ってストレスなどが溜まりかねない。
そもそも、するべきことは TeX の学習「だけ」ではなく、TeX の学習「ばかり」に時間を割く訳にもいかんだろ。

478:132人目の素数さん
17/11/21 06:43:05.49 cl7UYlaS.net
>>440
>おっちゃんに本当に必要なのは、「 tex の勉強」という漠然とした行為などではなく、
>さっさと投稿したい雑誌のサイトに行って投稿規定をくまなく読んで、
>テンプレートをダウンロードして いきなり実践的に論文を書き上げることである。
有名ジャーナルに投稿するには、論文の質の向上が必要だろ。

479:132人目の素数さん
17/11/21 06:53:52.87 X9h/AUBd.net
>>442
>有名ジャーナルに投稿するには、論文の質の向上が必要だろ。
日本語が読めないのかな?>>440にちゃんと書いてあるじゃん。
>「慌てる必要はない」などと後ろ向きな姿勢になってる時点で問題外。
>論文を書き上げるのは慌ててやっていいんだよ。
>慌てちゃいけないのは その後の「推敲」と「投稿」だよ。
質の向上は、論文を書きあげたあとの「推敲」で行えばいいのである。
書いてすらいないのは問題外。
そもそも、書き上げた後でなければ「質」を語ることは不可能。
お前は書いてすらいないのだから、その段階で「質」を語るのは詭弁である。
もしくは、「質」とやらの向上によって、書き上げた論文を根本的に
書き直さなければならない可能性があるのかもしれない。もしそうなら、
そもそも お前は「考えがまとまってない」というスタートライン未満の段階であり、
「論文を書く」と宣言できる段階に達してすらいないことになる。
どちらにしても、お前のやってることは後ろ向きすぎて問題外。
そんなことでは、今から1年後の 2018/11/21 になっても、
1本も論文書いてないと思うよw

480:132人目の素数さん
17/11/21 07:01:27.36 ezf/yWFV.net
>>421
>このような関数は存在しない
ええ、リュービル数では微分不可能です
ちなみにリュービル数全体の集合は測度0です
実際、ほとんどの無理数で微分可能な関数は可能です

481:132人目の素数さん
17/11/21 07:10:05.52 1JZsY16v.net
書き込みだけ見てると、
20:00に寝て4:00に起きてるみたいで、
超健康杉w

482:132人目の素数さん
17/11/21 07:32:40.33 cl7UYlaS.net
>>443
>>有名ジャーナルに投稿するには、論文の質の向上が必要だろ。
>
>日本語が読めないのかな?>>440にちゃんと書いてあるじゃん。
>>440の文章において論文の質について書いてあるとすれば、
>さっさと投稿したい雑誌のサイトに行って投稿規定をくまなく読んで、
>テンプレートをダウンロードして いきなり実践的に論文を書き上げることである。
の部分か或いは
>慌てちゃいけないのは その後の「推敲」と「投稿」だよ。
だろうが、ここをどう解釈したら質の問題について書かれていると読めるんだ?

483:132人目の素数さん
17/11/21 07:43:12.81 X9h/AUBd.net
>>446
くだらないイチャモンをつけて何がしたいんだ?
>慌てちゃいけないのは その後の「推敲」と「投稿」だよ。
この部分は、明らかに論文の質についての主張を内�


484:�している。 「推敲」とは質を上げる行為に他ならないからだ。 おっちゃんが日本語を読めてないだけ。 さて、おっちゃんが情けない腰抜けのクソザコであることは よく分かったので、俺から1つ質問させてくれ。 質問:いくら何でも、今から1年後の 2018/11/21 までには、 少なくとも1本は論文を書き上げてどこかの雑誌に投稿しているよな? YES か NO かで答えてくれ。



485:132人目の素数さん
17/11/21 07:56:55.06 cl7UYlaS.net
>>447
>「推敲」とは質を上げる行為に他ならないからだ。
推敲時に、新しく加えることがあったりして、時間がかかることもあるんですけどね。
>質問:いくら何でも、今から1年後の 2018/11/21 までには、
>少なくとも1本は論文を書き上げてどこかの雑誌に投稿しているよな?
>YES か NO かで答えてくれ。
誠に勝手ながら独断で判断させて頂くが、このスレでの経験上、
Yes か No をはっきりさせるような類の質問をする人はスレ主ではないかと思われます。
スレ主がする質問のタイプにかなり似ている。もし外れたら失礼。
2018年のことは分からんな。

486:132人目の素数さん
17/11/21 08:03:16.39 X9h/AUBd.net
>>448
>2018年のことは分からんな。
「そろそろ論文を書こうと思います。とりあえず tex の勉強を始めます」
という趣旨の発言をしていたはずの おっちゃんが、フタを開けてみれば、
既に数か月たってるのに全く論文を書いておらず、しかも、今から1年後の
2018/11/21 になっても、1本も論文を書いてない可能性を否定しないという体たらく。
だったら「論文を書く」なんて宣言しなければいいのに。

487:132人目の素数さん
17/11/21 08:19:58.10 cl7UYlaS.net
>>449
>だったら「論文を書く」なんて宣言しなければいいのに。
こんなところに誰かも分からず見えず声も聞こえぬ人が書いたような、具体性に欠けており
漫然としたこれからのその人の予定を真に受ける方がどうかしていると思うよ。
数学書を読んだことがある人は分かると思うが、数学書のシリーズモノでもよくあることだろ。
書籍に限らず数学というのはそういうモノだろ? 自分で書くのがどれだけ大変なことか。

488:132人目の素数さん
17/11/21 08:21:50.46 X9h/AUBd.net
なお、現状で論文を書いてないことの主な理由は、
(1) tex の勉強で躓いている
(2) 質の向上が必要なので慌てない
というものであるらしいが、(1)は的外れであることを既に指摘した( tex について難しく構えすぎている)。
また、(2)については、そもそも書き上げた後でなければ「質」を語ることは不可能なので
詭弁であることを指摘した。
あるいは、おっちゃんは「考えがまとまってない」というスタートライン未満の
状態なのかもしれない。もしそうなら、考えをまとめるための良い方法を1つ教えよう。
・ それは、論文を書き上げることであるw (投稿する必要はない)
草案レベルでも何でもいいから、とにかく文書としてアウトプットしてしまえば、
そこを出発点として、新たに考えをまとめることができるのである。
むろん、質の向上に繋がるのは言うまでもない。
予め論文のフォーマットで文書を作っておけば、いざとなったら
すぐに投稿することだって可能である。
結局、「論文の投稿」を目標とする限り、まず草案レベルでも何でもいいから
論文を書き上げなければ話が始まらないのに、おっちゃんは言い訳ばかりが達者である。
質が悪いと思ったら投稿しなければいいだけの話なのに、論文を書くこと自体に
何を躊躇しているのか。tex を勉強すると言い出して既に数カ月たってるんだから、
tex を使って文書を書くこと自体は可能でしょうに。やる気がないなら
「論文を書く」なんて宣言しなければいいのである。

489:132人目の素数さん
17/11/21 08:26:38.56 cl7UYlaS.net
>>451
私は自らが納得するまで投稿はしない。
まあ、論文を書くためのメモはシコシコしているけどな。

490:132人目の素数さん
17/11/21 08:27:12.86 X9h/AUBd.net
>>450
>数学書を読んだことがある人は分かると思うが、数学書のシリーズモノでもよくあることだろ。
>書籍に限らず数学というのはそういうモノだろ? 自分で書くのがどれだけ大変なことか。
詭弁であるw
数学書と論文では分量が違いすぎるww

>自分で書くのがどれだけ大変なことか。
「とりあえず論文の草案を書いてみる」程度の熱意すら無い、やる気ゼロの人間が、
自分で書くことの大変さを語るという寒いギャグ。

どこを見ても問題外ですね。

491:132人目の素数さん
17/11/21 08:33:18.89 cl7UYlaS.net
>>45


492:3 >どこを見ても問題外ですね。 問題外と捉えてよい。 どこの誰かも知らない人の論文を書くアドバイスは不要である。 アドバイスをしたいなら、せめて所属先などを明記すべきである。



493:132人目の素数さん
17/11/21 08:33:43.37 X9h/AUBd.net
>>452
>私は自らが納得するまで投稿はしない。
納得するまで投稿しないのは当たり前だろ。
投稿しないことと、「草案レベルでもいいから論文を書き上げてみる」
こととは別物だろ。俺が何度も言ってるのは、
「論文を書くと宣言してから数カ月もたってるのに、草案レベルでいいから
 論文を書き上げてみるという具体的な行為に及んでおらず、なおかつ、
 おっちゃんの言動を見るに、1年後の 2018/11/21 になっても今と全く変わらない可能性が
 うっすら垣間見えるという やる気の無さは何なんだ」
ということだよ。
たぶん、おっちゃんは10年たっても1本も論文書いてないと思うよ。

494:132人目の素数さん
17/11/21 08:42:07.95 cl7UYlaS.net
>>454
どこの誰かも知らぬ人の論文を書くアドバイスは一切不要である。
アドバイスをしたいなら、せめて所属先などを明記すべきである。
お前さんが院生であったり博士号取得者はあるけど…という可能性もある。
所属先などは書かないと、信憑性に欠けた内容になりかねない。

495:132人目の素数さん
17/11/21 08:44:24.53 cl7UYlaS.net
>>455
失礼。
>>456>>455宛て。

496:132人目の素数さん
17/11/21 08:49:10.18 X9h/AUBd.net
>>454, >>456
>アドバイスをしたいなら、せめて所属先などを明記すべきである。
>・・・
>所属先などは書かないと、信憑性に欠けた内容になりかねない。
俺が書いたことは極めて常識的かつ普通の内容であり、
所属先の有無で説得力や信憑性が変化するようなものではない。
なんたって、俺が言ってることは
「 tex の勉強は程々にしとけ。草案レベルでいいから論文を書き上げてみろ。
 まずはアウトプットが大事だ。そこを土台にして質を上げろ。」
という、誰にでも言える凡庸な内容に過ぎないんだからなw
この程度の内容に説得力も信憑性もクソもない。ただの常識である。
そして、その程度の常識に納得もせず実践もできてない おっちゃんは、
たぶん10年たっても1本も論文書いてないと思うよ。本当に問題外なんだわ。

497:132人目の素数さん
17/11/21 08:57:25.70 cl7UYlaS.net
>>458
>たぶん10年たっても1本も論文書いてないと思うよ。本当に問題外なんだわ。
そもそも、各個人や世間、自然などにおける10年後のことは誰にも分からんし、
10年後のことを心配するのは杞憂だと思うよ。
私も含めて、お前さんが10年後生きているかどうかも分からない。

498:132人目の素数さん
17/11/21 09:19:16.89 X9h/AUBd.net
>>459
この人は何を言ってるんだろう。
こういうときに書かれる「10年後」みたいな表現は、
本人の危機感を呼び覚ますための定型文だろうに。
「確かに今のわたしの行動パターンでは、10年後ですら論文が全く書けてないかもしれないな」
といった "焦り" が全く見えてこない時点で、本格的に おっちゃんはダメ人間の部類だなと思いました。
「10年後は私やあなたが生きてるかどうかさえ分からない」なんていう発想はできるのに、
「いま生きてる この瞬間から早いうちに行動を起こさなければ」といった危機感は無いんですね。
1年後の 2018/11/21 の時点で論文が1本 書きあがってるかどうかの目途すら立たないんですね。
本当にやる気ないですね。ま、いいや。

おしまい。

499:132人目の素数さん
17/11/21 09:49:11.76 cl7UYlaS.net
>>453
>数学書と論文では分量が違いすぎるww
そうそう、書き易さでは数学書の方が論文より書き易いだろうな。
数学書を書くときも論文などを読むことはしばしばあるが、
特にこれといった何らかの新規性や新しいアイディアは余りいらない。
これに対して、論文を書くときは何らかの新規性や新しいアイディアなどは欠かせず、論文を読むことが非常に多いだろうしな。
>>460
>「10年後は私やあなたが生きてるかどうかさえ分からない」なんていう発想はできるのに、
>「いま生きてる この瞬間から早いうちに行動を起こさなければ」といった危機感は無いんですね。
>1年後の 2018/11/21 の時点で論文が1本 書きあがってるかどうかの目途すら立たないんですね。
10年後のことを書いた文章に何らかの意味付け或いはその文章の正当化をしてから
1年後のことに何らかの意味付けや期待をしようとする考え方は、手順前後で意味がない。
1年後のことを書いた文章に何らかの意味付け或いはその文章の正当化、期待を抱くことなどをしてから
10年後のことに何らかの意味付けをしようとしたりする考え方の方に、意味が生じる。

500:132人目の素数さん
17/11/21 10:23:44.26 X9h/AUBd.net
>>461
>そうそう、書き易さでは数学書の方が論文より書き易いだろうな。
いい加減に下らないので、お前の そういう詭弁には付き合わないが、一言だけ言わせてもらうと、
お前が論文を書かないことを数学書との比較による詭弁で正当化したところで、
それでお前が得るものと言えば、
・ 未だに草案レベルですら論文を書いてない
という虚しさだけだぞ。それで お前に何の得があるんだ?
目先の揚げ足取りばかり流暢に何行もレスしやがって、本当にバカだなお前。
その労力を論文を書く作業にあてればいいのに。
くだらない詭弁で屁理屈こねてるヒマがあったら、
さっさと論文を書いてみろやバカタレw

501:132人目の素数さん
17/11/21 10:34:38.44 cl7UYlaS.net
>>462
では参考までに1つ伺うが、一流ジャーナルのアクセプト率は何%位で、
一流ジャーナルへの掲載までにかかる時間はどの位になるのか?
まあ、はじめからそうしようとすると、数年以上はかかるだろうな。

502:132人目の素数さん
17/11/21 10:47:46.90 X9h/AUBd.net
>>463
アクセプト率は、公開している雑誌と公開していない雑誌がある。
・ 公開していない雑誌のアクセプト率は、知りようが無い。
・ 公開している雑誌のアクセプト率は、自分で調べればいいだけの話。
一般的には、一流誌は10%未満のアクセプト率で、
普通の雑誌なら50%くらいと言われているが、
こんな情報は実質的には参考にならない。
次に、ジャーナルへの掲載にかかる時間だが、これは論文の内容や
雑誌によって大きく変わる。数学の場合は長くなる傾向にあり、
普通は査読期間だけでも3カ月から6カ月程度の期間が設けられる。
査読者自体を見つけるのに苦労するケースでは、
その分だけ期間が長引くこともあると思われる。
が、1つ言えることは、投稿してから掲載される(アクセプトされたとしての話だが)までに
かかる総合的な期間が「数年以上」なんてのは まずない。

503:132人目の素数さん
17/11/21 11:07:16.81 cl7UYlaS.net
>>464
なるほど、一応参考になった。
TeX や LaTeX でテキトーに草案を書くという方針でよい訳か。
まあ、英語に不慣れなんだが、自分の将来のこともあるし書き始めてみるわ。
将来の成り行きは分からんけどな。

504:132人目の素数さん
17/11/21 11:21:25.57 X9h/AUBd.net
>>465
うむ。頑張れ おっちゃん。

505:132人目の素数さん
17/11/21 17:47:05.05 ea3AOVHS.net
9r1HQSkjFKGUpZGYKclkoLFe5HQExKYPQmyCxxy5xSA5yB2V32RAHIGwOMEFKYzycuL9VahX2APRjE2NwpjOScljwhTYsyRMn8fkPRLRx2RhF2QgYIBppvNGz3vpYE2FalY6Ink0JWu8r3qkWF4vgd5hMeYLcBLdb6p1Xbak7c2bk3FkyxgCyJnQNBu2bumqTpvnJ3xV

506:132人目の素数さん
17/11/21 21:19:48.60 IcS8CTB2.net
Texの勉強なんて草稿を書いた後でいいのにw
要するに
 論文のネタになると思ってたものが、よくよく見なおしたら愚にもつかない代物だった
ってことでしょ?ぶっちゃけw
それが公知だったのか、そもそも間違いだったのかは知らんがw

507:132人目の素数さん
17/11/21 21:20:00.09 ea3AOVHS.net
��s�́AJR���s�w�����k��
�T���̏ꏊ�Ɉʒu���A�����ɍ
ݏZ���Ă��鐶�k�����⏗�q�
��k�̊F�����ɂ��A���ϒʂ
��Ղ��‹��ƂȂ��Ă��

508:132人目の素数さん
17/11/21 21:26:43.20 IcS8CTB2.net
>>463
>では参考までに1つ伺うが、一流ジャーナルのアクセプト率は何%位で
優れた論文は100%、愚にもつかない論文は0%
統計値を知ったところで何の意味も無い

509:132人目の素数さん
17/11/22 00:10:01.16 Oxthj7dF.net
スレリンク(rikei板:62番)
        ↑ ↑ ↑ ↑ ↑ ↑

510:132人目の素数さん
17/11/22 03:14:21.30 qQ5pDONu.net
>>468
>>470
余計なレスと運営乙。

511:132人目の素数さん
17/11/22 07:06:45.22 scqo9erK.net
ヤクザは滅べばいいのに

512:132人目の素数さん
17/11/22 07:16:23.64 8FdjpTKM.net
>>472
余計なレスと運営乙。

513:132人目の素数さん
17/11/22 11:02:27.08 qQ5pDONu.net
>>474
おっちゃんでした。

514:132人目の素数さん
17/11/22 11:50:34.66 qQ5pDONu.net
まあ、私に期待するまたは期待していた者がどこの誰かは全く分からないが、
暴力団などのように悪に染まった団体、そして2チャンの管理者といったような2チャンの組織の関係者、
などからの期待はお断りしておく。わざわざ暴力団のような悪い団体、
或いは2チャンの組織に染まってまで人生を有利に運ぶ気はない。
まあ、書き方から、私への期待者何某について読み取れることは
説得させる能力があって弁が立つような書き方をする者ということだ。

515:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/22 19:14:35.84 mEHYOxL2.net
どうも。スレ主です。
しばらく、留守にしていました。
その間に、おっちゃんご活躍でしたね(^^
お疲れさまで~す(^^

516:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/22 19:15:58.38 mEHYOxL2.net
さて
>>409-410 >>417
"<[論理が飛躍した短絡的な結論]>
・確かに、数学では、変数が多いときに、例えば他の変数を固定して偏微分を考えることがある
・だが、偏微分だけで済ませて、”終わり”では大間違い
・もともとは、全て変数だったとすれば、便法に変数固定の偏微分を使ったとしても、最後は全変数への考究が必要だ
・”uniform probability”でサイコロを1回、出目は2、結果は丁(偶数)。よって「結論:”uniform probability”でサイコロを1回振れば、結果は丁(偶数)」という誤りが導かれる如し
・この理屈が分らないHigh level peopleは、自分達の<[論理が飛躍した短絡的な結論]>に気付かない"
(文系) High level people たちの<数学ディベート>(もどき?)について(>>8
これ困ったものです(^^
なので、そろそろ手早く決着させましょう~(^^
つづく

517:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/22 19:16:31.41 mEHYOxL2.net
>>478 つづき
そのために、Taylor先生達の本と論文から、下記関連事項を3つ引用する。
(>>44-45より)
URLリンク(pdfs.semanticscholar.org)
[成書]The Mathematics of Coordinated Inference: A Study of Generalized Hat Problems Hardin, Christopher S., Taylor, Alan D. November 26, 2012
(抜粋)
P109
Bibliography
[HT08b] Christopher S. Hardin and Alan D. Taylor. A peculiar connection between the axiom of choice and predicting the future. American Mathematical Monthly, 115(2):91{96, February 2008.
URLリンク(c)


518:iteseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.365.7027&rep=rep1&type=pdf [HT09] Christopher S. Hardin and Alan D. Taylor. Limit-like predictability for discontinuous functions. Proceedings of the AMS, 137:3123{3128, 2009. http://www.jointmathematicsmeetings.org/proc/2009-137-09/S0002-9939-09-09877-3/S0002-9939-09-09877-3.pdf (引用終り)(注:PDFのURLは、私が付与した) ([HT08b](2008)が下記1)項関連、[HT09](2009)が下記2)項関連、[成書](2012)が3)項関連で、時間順です。) (注:[HT08b] は、https://xorshammer.com/2008/08/23/set-theory-and-weather-prediction/ SET THEORY AND WEATHER PREDICTION XOR’S HAMMER Some things in mathematical logic that I find interesting WRITTEN BY MKOCONNOR Blog at WordPress.com. AUGUST 23, 2008 で 引用されており、かれの”Here’s a puzzle”の元ネタと思われる。 つづく



519:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/22 19:17:55.55 mEHYOxL2.net
>>479 つづき
1)
さて、まず、[HT08b] より
(抜粋)
P91
1. INTRODUCTION.
We often model systems that change over time as functions from the real numbers R (or a subinterval of R) into some set S of states, and it is often our goal to predict the behavior of these systems.
Generally, this requires rules governing their behavior, such as a set of differential equations or the assumption that the system (as a function) is analytic.
With no such assumptions, the system could be an arbitrary function, and the values of arbitrary functions are notoriously hard to predict.
After all, if someone proposed a strategy for predicting the values of an arbitrary function based on its past values, a reasonable response might be,
“That is impossible. Given any strategy for predicting the values of an arbitrary function, one could just define a function that diagonalizes against it: whatever the strategy predicts, define the function to be something else.”
This argument, however, makes an appeal to induction:
to diagonalize against the proposed strategy at a point t, we must have already defined our function for all s < t in order to determine what the strategy would predict at t.
In fact, the lack of well-orderedness in the reals can be exploited to produce a very counterintuitive result: there is a strategy for predicting the values of an arbitrary function, based on its previous values, that is almost always correct.
Specifically, given the values of a function on an interval (?∞, t), the strategy produces a guess for the values of the function on [t,∞), and at all but countably many t, there is an ε > 0 such that the prediction is valid on [t, t + ε).
Noting that any countable set of reals has measure 0, we can restate this informally: at almost every instant t, the strateg predicts some “ε-glimpse” of the future.
つづく

520:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/22 19:18


521::43.01 ID:mEHYOxL2.net



522:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/22 19:19:16.31 mEHYOxL2.net
>>481 つづき
(一部仮訳)
推論3.4が示していることは、実数からある状態の集合に対する関数とするuniverseをモデル化すると、μ戦略は過去からの現在を完全な尺度で正しく予測するということです。
(次のセクションでは、on a set of full measureで、将来の予測も正しく予測されることを示しています)。
T = Rに関するこれらの結果は、Tが実数の任意の区間である場合にも有効であることに留意されたい。
これをμ戦略が確率1で正しいと解釈することには注意が必要です。
固定されたfixed true シナリオの場合、区間[0,1](またはRにおいて、適切な確率分布の下で)において瞬間tをランダムに選択すると、
推論3.4は、μ戦略がtで確率1で正しいことを教えてくれる。
しかし、瞬間tを固定してランダムにfixed true シナリオを選択すると、そのシナリオの下でμ戦略が正しい確率は0であるか、または存在しないかもしれません
ランダムなシナリオの概念をどのように定義するかによって異なります。
(引用終り)
<まとめ1>
ここに示した様に、何を固定するかで、確率が1になったり、0になったり、はたまた、存在しないかもしれない
ランダムなシナリオの概念をどのように定義するかによって異なる。
これが、[HT08b]の結論である!
つづく

523:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/22 19:19:42.88 mEHYOxL2.net
>>482 つづき
2)
次に[HT09] より
(抜粋)
P3126
The derivation of this from our main result uses the upward topology on α in which, as we mentioned, the scattered sets are the finite subsets of α.
A known result that we extend here is Theorem 5.1 from [5] in which the present is predicted from an “infinitesimal” piece of the past, and the predictor is correct except on a countable set that is nowhere dense.
In terms of our framework here, we have the topology on R in which the basic open sets are half-open intervals (w, x]
(so f ~x g if f and g agree on (w, x) for some w < x).
It is known that the scattered sets here are countable and nowhere dense.
The exact characterization of the error sets in this example (as scattered sets) was absent in [5].
[5] C. Hardin and A. Taylor, A peculiar connection between the axiom of choice and predicting the future, American Mathematical Monthly 115 (2008),
(一部仮訳)
ここで拡張した既知の結果は、[5]からの定理5.1であり、ここでは、過去の「無限小」の部分から予測され、予測は正しいとは言えない。
この例における誤差集合の正確な特徴付け(分散集合として)は[5]にはなかった。
(引用終り)
<まとめ2>
Taylor氏らは、[HT08b] の結論を否定している。
”予測は正しいとは言えない”&
”この例における誤差集合の正確な特徴付け(分散集合として)は[5]にはなかった”
という。
つづく

524:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/22 19:20:14.29 mEHYOxL2.net
>>483 つづき
3)
最後に[(成書)The Mathematics of Coordinated Inference: A Study of Generalized Hat Problems]より
(抜粋)
P76
7.3 Corollaries
The second result we derive concerns the extent to which "the present can be predicted based on the past."
Here, the exact characterization of the error sets occurs in Theorems 3.1 and 3.5 in [HT08b].
The derivation of this uses the topology on R in which the basic open sets are half-open intervals (w; x] (so f ~x g if f and g agree on (w, x) for some w < x).
It is known that the scattered sets here are countable and nowhere dense.
The exact characterization of the error sets in this example (as scattered sets) was absent in [HT08b].
<まとめ3>
Taylor氏らは、[HT08b] の結論を否定している。([HT09]に同じ)
つづく

525:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/22 19:20:59.14 mEHYOxL2.net
>>484 つづき
<結論>
1.以上より、[HT08b](XOR’S HAMMERのパズル元ネタ)は、著者自身の手([HT09]と[成書]と)で、否定されている。
 ”The exact characterization of the error sets in this example (as scattered sets) was absent in [HT08b].”
2.元々、[HT08b]中で
 「これをμ戦略が確率1で正しいと解釈することには注意が必要です。
  固定されたfixed true シナリオの場合、区間[0,1](またはRにおいて、適切な確率分布の下で)において瞬間tをランダムに選択すると、
  推論3.4は、μ戦略がtで確率1で正しいことを教えてくれる。
  しかし、瞬間tを固定してランダムにfixed true シナリオを選択すると、そのシナリオの下でμ戦略が正しい確率は0であるか、または存在しないかもしれません
  ランダムなシナリオの概念をどのように定義するかによって異なります。」と注意を入れていて、完全に嵌まっている訳では無かったが
  しかし、その”1. INTRODUCTION”には、思わせぶりなことが書いてあり、ミスリードだろう。
3.XOR’S HAMMERは、勿論、きちんと[HT08b]中の注意書きは読んでいて、意識してあくまで、”Here’s a puzzle”と断っていることを注意しておく。
4.なお、XOR’S HAMMERのパズルに嵌まるのは、[HT08b]でのTaylor氏らの嵌まり方を見ると、素人衆がハマルのも、これは無理は無い面もある。
5.しかし、ハマッたままで、”固定!”とか勝手に叫ぶと、時枝でも同じく嵌まりの図だろう。
 「何を固定するかで、確率が1になったり、0になったり、はたまた、存在しないかもしれない
  ランダムなシナリオの概念をどのように定義するかによって異なる。
  これが、[HT08b]の結論である!」(上記)をしっかり味わうように!!
以上

526:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/22 19:23:21.32 mEHYOxL2.net
>>485 補足
これを読めば、(文系) High level people たちの<数学ディベート>(もどき?)(>>8
がどういうものか、よく分る
私ら、理系の出典(URL)とコピペベース、ロジック(論証)&証明重視のスタンスと、ディベートもどきスタイル(2CHスタイル?)とは、明白に違いますね(>>8

527:132人目の素数さん
17/11/22 19:25:48.13 8FdjpTKM.net
あんたアホ丸出しだな
スレ主と同レベル

528:132人目の素数さん
17/11/22 19:27:35.31 8FdjpTKM.net
>>486
自分で理解もしてないものをべたべた貼るのは文系以下

529:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/22 19:38:54.99 mEHYOxL2.net
>>485 補足2
上記を見れば、私が、下記”「XOR’S HAMMERのHere’s a puzzle」が、Taylor氏の”A Study of Generalized Hat Problems ”にあるというウソ”を、見抜いて根拠ある発言をしていることが知れるだろう
対して、サイコパスは、「みさかいなく反射的にウソをついている」(きちんとTaylor氏の本を確認していない)ことが明白だ!
<参考引用>
>>222 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/17(金)
(抜粋)
一人サイコパスがいる。これは罵倒ではなく、事実だ
かれは、2回明白なウソをついた
一つは、「XOR’S HAMMERのHere’s a puzzle」が、Taylor氏の”A Study of Generalized Hat Problems ”にあるというウソ(引用2)
サイコパスは、自分のウソに


530:自分が騙されるようだ(^^ これでは、厳密な論理が求められる数学には向かない性格だろう(^^ (参考)http://blog.goo.ne.jp/grzt9u2b/e/c1f41fcec7cbc02fea03e12cf3f6a00e サイコパスの特徴、嘘を平気でつき、人をだまし、邪悪な支配ゲームに引きずり込む 2007年04月06日(>>1) (引用2) スレ45 https://rio2016.5ch.net/test/read.cgi/math/1508931882/582 582 返信:132人目の素数さん[sage] 投稿日:2017/11/08(水) 06:08:45.65 ID:bFycbFFu [1/5] >>577 >これまっとうな教科書(テキスト)になってますか? 既出 おまえバカなの? The Mathematics of Coordinated Inference: A Study of Generalized Hat Problems (Developments in Mathematics) 2013 edition by Hardin, Christopher S., Taylor, Alan D. (2013) Hardcover Springer Verlag https://pdfs.semanticscholar.org/8514/a9f8b30546ea81739b9409132673276713d3.pdf (引用終り)



531:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/22 19:41:01.40 mEHYOxL2.net
>>488
反論があれば、具体的に、どうぞ(^^

532:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/22 19:45:57.91 mEHYOxL2.net
>>413
あなたは、ゼノンです
ゼノン君は、哀れな素人さんと、ギリシャのアリストテレス(>>411)の話でもしなよ。この答えで十分だろ?(^^
お似合いだと思うよ

533:132人目の素数さん
17/11/22 20:19:38.12 POhBEycw.net
>>408
> ・uniform probabilityという与えられた問題の条件で、その解答が、1回の試行で単に”uniform probabilityを満たしているから”の一言で済ませて正解と言えるのか?

おまえはサイコロの確率が試行回数に依存すると本気で思っているのか?

> ・1回の試行では、与えられたuniform probabilityという与えられた問題の条件を使った解答とは言えないだろう
> ・なぜならば、uniform probability以外の条件でどうなるかについて、その解答ではなにも言えず、uniform probability以外の条件でも同じ結論に達してしまうからである

uniform probabilityを考える問題でuniform probability以外を考えたらバッテンです
サイコロを振れ、と書いてあるのにくじを引く問題を考えてしまったら算数のテストはバッテンです

534:132人目の素数さん
17/11/22 20:21:18.60 POhBEycw.net
>>415
> [小学生の算数のテスト]
> サイコロを1回振って1の目が出る確率は?
>
> [スレ主の解答]
> 各目が等確率1/6で出るからといって1/6が正解とは言えない
[正解]
1/6
(先生のコメント)
スレ主君は難しいことを考えるんだね!
勉強がんばろう!

>>416
> [小学1年生の算数のテスト]
> サイコロを振って出る目を書きなさい
>
> [スレ主の解答]
> サイコロを1回振って出た目が偶数であれば、サイコロを1回振って出る目は偶数である
[正解]
1, 2, 3, 4, 5, 6
(これら6通りが等確率)
(先生のコメント)
スレ主君は不思議なサイコロを考えているのかな?
そういうサイコロがあったら楽しそうだね!
勉強がんばろう!

>>408
> ・uniform probabilityという与えられた問題の条件で、その解答が、1回の試行で単に”uniform probabilityを満たしているから”の一言で済ませて正解と言えるのか?
>>409
> ・”uniform probability”でサイコロを1回、出目は2、結果は丁(偶数)。よって「結論:”uniform probability”でサイコロを1回振れば、結果は丁(偶数)」という誤りが導かれる如し
> ・この理屈が分らないHigh level peopleは、自分達の<[論理が飛躍した短絡的な結論]>に気付かない

535:132人目の素数さん
17/11/22 20:24:39.09 POhBEycw.net
スレ主はサイコロの確率すら分かっていなかった(>>408
まずは間違いを認めなさい
それが出来ないなら数学なんか勉強してる場合じゃない
急いで小学生の道徳教科書を読みなさい

536:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/22 20:53:10.98 mEHYOxL2.net
>>492-494
おまえ、それしか言えないのか?
(>>485より)
”[HT08b]中で
 「これをμ戦略が確率1で正しいと解釈することには注意が必要です。
  固定されたfixed true シナリオの場合、区間[0,1](またはRにおいて、適切な確率分布の下で)において瞬間tをランダムに選択すると、
  推論3.4は、μ戦略がtで確率1で正しいことを教えてくれる。
  しかし、瞬間tを固定してランダムにfixed true シナリオを選択すると、そのシナリオの下でμ戦略が正しい確率は0であるか、または存在しないかもしれません
  ランダムなシナリオの概念をどのように定義するかによって異なります。」と注意を入れていて、完全に嵌まっている訳では無かったが
  しかし、その”1. INTRODUCTION”には、思わせぶりなことが書いてあり、ミスリードだろう。”
って書いてあげたでしょ? >>479 に挙げた3つのPDFをしっかり読む方が、おれのつまらんバカ板5CHのレスの重箱の隅をつつきより
数学の正道だと思うのだが・・?
それが出来ないっていうなら・・
(文系) High level people たちの<数学ディベート>(もどき?)(>>8)に付き合う気は無い!(>>486
”勝負は付いた!”ってことで
今後スルーさせて貰うよ

537:132人目の素数さん
17/11/22 20:55:15.37 tbLNeHMa.net
>>495
お前はまず自分の間違いを認めるべきである
>>492-493はお前が間違っていることが誰にでも分かるように書かれている
まずは間違いを認めなさい
それが出来ないなら数学なんか勉強してる場合じゃない
急いで小学生の道徳教科書を読みなさい

538:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/22 21:02:43.54 mEHYOxL2.net
>>495 追加
えーと、>>50の「XOR’S HAMMERのYou and Bobのpuzzleを、任意関数の数当て解法」は、おれと「ぷふ」さんの勝利ということで、いいな!
似ているはずさ
おれと「ぷふ」さんが、”正しい”のだからね(>>485より)
時枝の議論は、上記の「XOR’S HAMMERのYou and Bobのpuzzleを、任意関数の数当て解法」について、”俺たちが正しい”ということがきちんと理解できてからにしような

539:132人目の素数さん
17/11/22 21:06:07.12 tbLNeHMa.net
>>497
勝利の秘訣はまっとうな反論を無視することか?笑わせんな

540:132人目の素数さん
17/11/22 23:21:20.56 scqo9erK.net
㼿㼿㼠㼿苣膄㾁裣脚‿벑鋯
밚㼿붂ᨠਿ렿뤿먿넿눿댿됿
ꧦ阿궗難膑㼿㼿㼿㼿㾏㼿誃㼿
㼿₃釣芿볣莳鿨㿣
莻铧ꦶ㾞闯벍㾿ᨿꇣ袱
᫢薡㼿㼿㼿ꊤ꒤ꚤꢤꨠꎰꎱꎲꎳꏡꏢꌚ₣
쪸묿붤놥톥뾡벥᪵

541:132人目の素数さん
17/11/22 23:26:44.11 scqo9erK.net
貴方の道徳が主張することを信じなさい。信じなさい
。もう、アイツらの相手は嫌だ。大切なメッセージに
限ってノイズはいる。やっぱり滅びるはやくざに限る
。何も出来ないが、誰かにしてほしい。してほしい。
でも悔しい。

542:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/23 08:53:04.51 A258vGqh.net
>>497 補足
1.>>50より"<言いたいことは、結論を言えば、XOR’S HAMMERも、Sergiu Hart氏・時枝も、全部パズルなんだよね>
  を書いた時点で、>>479-485を、切り札にする予定だった
2.(文系) High level people たちの<数学ディベート>(もどき?)(>>8)について:
  >>492-494は、”uniform probability”を説明するための非数学的な例えの説明であって、そこに重箱の隅つつきの難癖をつけてもなんにもならんぜ
  何も間違っていない。”uniform probability”の意味を理解していない、貴方たち(文系) High level peopleが、曲解して>>492-494のような難癖をつけているだけのことだ
3.「時枝の前に、まず、>>471-472の”XOR’S HAMMERの任意関数の数当て解法”をやろう!」(>>56より)
  と言った意図は、二つある
  1)[HT08b]中で
 「これをμ戦略が確率1で正しいと解釈することには注意が必要です。
  固定されたfixed true シナリオの場合、区間[0,1](またはRにおいて、適切な確率分布の下で)において瞬間tをランダムに選択すると、
  推論3.4は、μ戦略がtで確率1で正しいことを教えてくれる。
  しかし、瞬間tを固定してランダムにfixed true シナリオを選択すると、そのシナリオの下でμ戦略が正しい確率は0であるか、または存在しないかもしれません
  ランダムなシナリオの概念をどのように定義するかによって異なります。」と注意を入れていて(>>485
  自分勝手に、”固定!”を使用すると、確率1から0まで、なんでも言えてしまうこと
  2)”XOR’S HAMMERの任意関数の数当て解法”は、単純に1列で決定番号も使わないシンプルなパズルだから、貴方たち(文系) High level peopleがどこで躓いているかが明白になること
以上、補足まで

543:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/23 08:56:21.13 A258vGqh.net
>>485 <ついでに補足>
1.[HT08b](XOR’S HAMMERのパズル元ネタ)は、XOR’S HAMMERのパズルそのものとは微妙に異なる
2.[HT08b]は、>>480 "if someone proposed a strategy for predicting the values of an arbitrary function based on its past values"
  とあるように、元々は、過去の関数値から、現在又は未来の関数値を予測するという話だった
3.但


544:し、>>481 "For a fixed true scenario, if one randomly selects an instant t in the interval [0,1] (or in R, under a suitable probability distribution)"と一言注釈が入った 4.おそらく、XOR’S HAMMER氏は、ここをピックアップして、”XOR’S HAMMERの任意関数の数当て解法”パズル(>>56)を考案したんだろう   が、当然(>>481) ”However, if one fixes the instant t, and randomly selects a true scenario, then the probability that the μ-strategy is correct at t under that scenario might be 0 or might not even exist, depending on how one defines the notion of a random scenario.”   も読んでいて、あくまでパズルだと、”Here’s a puzzle:”(>>50より)を明記したわけだ 以上、補足まで



545:現代数学の系譜 雑談 古典ガロア理論も読む
17/11/23 09:28:25.77 A258vGqh.net
<独り言>
1.”>>479-485を、切り札にする”と言っても、言うほど簡単じゃない。
  分量的にも大変だ。中途半端だと、議論の錯綜に輪を掛けることになる。
  だから、PDFを3つ読み込まないといけなかった。
  >>481の”However, if one fixes the instant t, and randomly selects a true scenario, ・・・ at t under that scenario might be 0 or might not even exist, depending on how one defines the notion of a random scenario.”
  には、早く気付いていたが、
  他のPDFとの関連も確認する必要があった。
2.(文系) High level people たちの<数学ディベート>(もどき?)(>>8)は、全く面白くないんだよね。
  自分達が、関連論文を読んで、紹介しようとしないから、話のレベルが全く上がらない。
3.その点、ピエロは、関連論文の検索能力はある。
  例えば>>49のTaylor氏達のPDFとか、あるいは知っていたが重視していなかった”XOR’S HAMMERの任意関数の数当て解法”(>>56)を発掘したりとかは、大いに評価できる。
  (一方、サイコパス性格なので、(自分のウソを信じるから)自分に甘く、厳格な数理論理の貫徹ができない。また、細かい点で間違いが多い。)


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch