18/06/02 07:09:18.23 RHyDyzti.net
形式的体系外とか内とかいっても、やってることは
ZFCの宇宙Vの中で、ZFCのモデルMとか
その意味論や証明論をやってるだけ。
そう考えるのが一番簡単だし、それが集合論の人の
普段の思考に最も即すと思う。
別にZFCじゃなくても良いけど、
公理系を変えて考えるときにもそれがVの性質なのか
Mの性質なのかの二つの場合がある。
非ユークリッド幾何のモデルをユークリッド幾何の中で
作ったりする事とまったく同じ。
Vがambient spaceで、Mがその中に埋め込まれた空間。
独立性証明は、原理的にはもっと弱い算術の上で
行われてると考える事も出来るけどね。そう考える場合、
実際の証明の流れを多少modifyしたような事が
算術の上でemulateできる、みたいね感じになって
あまり直感的に分かりやすいとは言い難いよね。