17/11/04 20:57:46.25 sjIJjomh.net
>>405 補足
<おちこぼれ達のための補習講座11-2>
(素数pの√pによる同値類の考察)
1.いうまでもなく、√pは無理数であり、有限小数ではありえない
2.補題3:二つの素数p,q は、時枝のしっぽの同値類の定義で、同じ同値類に属することはない。
Proof:√p-√q が、有限小数でないことを示せば、良い。そこで、√p-√q =tとおいて、背理法を使う
(√p-√q)^2 =t^2
p+q-t^2=2√p*√q
もし、tが有限小数であれば、√p*√q が有理数になり、矛盾である。QED
3.さて、補題3より、√2,√3,√5,・・・√p,・・・ は、全て異なる同値類に属する
つまり、√2,√3,√5,・・・√p,・・・ は、全て異なる固有のしっぽ(co-tail)を有すると考えられる
重ねて言えば、これらそれぞれに属する同値類の元たちは、それぞれの固有のしっぽ(co-tail)で区別できると考えられるべきだ
(πから作られる数列の同値類でも同じだし、全ての同値類について同じだ)
4.逆に、固有のしっぽ(co-tail)が、何番以降という固定された番号が決められないことを理由に、その存在を否定しようというのは、(古代ギリシャ数学は別として)21世紀の現代数学では理由にならんぜよ(^^
以上