分からない問題はここに書いてね435 at MATH
分からない問題はここに書いてね435 - 暇つぶし2ch695:132人目の素数さん
17/10/24 22:31:25.98 TtvYTWH3.net
>>675
部分積分して a[n+1] = e - (n+1) a[n]
両辺を (n+1)! で割って
a[n+1]/(n+1)! = e/(n+1)! - a[n]/n!
…で行き詰まりました。

a[n] = ∫[0,1] x^n e^(-x) dx であったなら
(参考までに)次のように求められるのですが…
ただし、納n=0, ∞] 1/n! が収束することは既知とします。
a[n+1] = -1/e + (n+1) a[n] より
a[n+1]/(n+1)! = -(1/e)/(n+1)! + a[n]/n!
この両辺を n = 0, 1, 2, ..., N-1 について足して
a[N]/(N)! = -(1/e) 納n=1,N] 1/n! + a[0]/0!
ここで a[0] = 1 - 1/e より
a[N]/N! = -(1/e) 納n=0,N] 1/n! + 1 ……①
区間 [0, 1] で 0 < e^(-x) ≤ 1 より
0 < a[N] < ∫[0, 1] x^n dx = 1/(n+1) → 0 (N → ∞)
ゆえに a[N] → 0 (N → 0)
よって、①の両辺の N → ∞ の極限をとって
0 = -(1/e) 納n=0, ∞] 1/n! + 1
したがって 納n=0, ∞] 1/n! = e


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch