現代数学の系譜 工学物理雑談 古典ガロア理論も読む44at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む44
- 暇つぶし2ch58:ID:xdoHcTHE http://www.geocities.jp/mickindex/russell/idx_russell.html バートランド・ラッセル Mick's Page ラッセルの著作 「無限公理」(1904) 初出は The Hibbert Journal, Vol.2。 論理主義を支える公理の一つ「無限公理」についてのラッセル自身による解説。この論文を書いた時点で、ラッセルは無限集合の存在は証明可能だと考えていました。従ってこの論文でのラッセルの認識は、「無限公理」ではなく「無限定理」です。 (英) http://www.geocities.jp/mickindex/russell/rsl_AI_en.html 原文 (和) http://www.geocities.jp/mickindex/russell/rsl_AI_jp.html 訳:ミック 作成日:2004/09/01 最終更新日:2005/12/30 (抜粋) まず私たちは、数学的帰納法の原理2を証明する。帰納法の原理は、この分野においては、等々以外からはほとんど期待できないような役割を果たす。 この原理が述べるのは、0が任意の性質を持ち、かつ、n がその性質を持っているときに n + 1 もそれを持っているなら、全ての有限数がその性質を持つ、ということである。 この原理を使って、n が任意の有限数であるとき、0から n までの数の[個]数(両端を含む)は、n + 1 であることが証明される。すると結論として、n が実在するなら、n + 1 も実在することになる。 そして0は実在するのだから、数学的帰納法の原理から、全ての有限数が実在することが帰結する。あるいは、m と n が0以外の有限数であるならば、m + n は m とも n とも異なることも証明できる。 もし n が任意の有限数であるなら、n は [ n までの] 有限数の[個]数ではない。なぜなら、0から n までの数の[個]数は n + 1 であり、n + 1 は n とは異なるからである。ゆえに、いかなる有限数も、その数までの[個]数ではない。 従って、基数の定義3より有限数の[個]数である[有限]数が実在することは明らかであることから、この数 n は無限数である。こうして、論理学の抽象の原理だけから、無限数の実在が厳格に論証された[1]。 つづく
次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch