17/10/06 15:01:08.17 q9Mru8N1.net
>>146 つづき
URLリンク(ja.wikipedia.org)
実数直線
(抜粋)
数学における実数直線(じっすうちょくせん、英: real line, real number line)は、その上の各点が実数であるような直線である。つまり、実数直線とは、すべての実数からなる集合 R を、幾何学的な空間(具体的には一次元のユークリッド空間)とみなしたものということである。
単に実数全体の成す集合としての実数直線は記号 R (あるいは黒板太字の ?) で表されるのがふつうだが、それが一次元のユークリッド空間であることを強調する意味で R1 と書かれることもある。
位相的な性質
実数直線上には標準的に二つの互いに同値な方法で位相を入れることができる。一つは、実数直線が全順序集合であることを用いて順序位相を入れる方法。
もう一つは先に述べた距離からくる内在的な距離位相を入れる方法である。R 上のこれら二つは全く同じ位相を定める。位相空間としては、実数直線は開区間 (0, 1) に同相である。
実数直線は明らかに一次元の位相多様体である。同相の違いを除いて、境界のない一次元多様体は二種類しかなく、実数直線 R1 のほかは円周 S1 である。
局所コンパクト空間としての実数直線はいくつかの方法でコンパクト化することができる。R の一点コンパクト化は円周(実射影直線)であり、付け加えられた点は符号なしの無限大と考えることができる。
別な方法で、実数直線に二つの端点を付け加えて得られる端コンパクト化は拡張実数直線 (extended real line) [?∞, +∞] と呼ばれる。他にも、実数直線に無限個の点を付け加えるストーン-チェックコンパクト化などがある。
文脈によっては実数全体の成す集合上に標準と異なる位相(例えば下極限位相やザリスキー位相)を入れるほうが有効であることもある。R に対するザリスキー位相は有限補位相と同じになる。
(引用終わり)
以上