17/10/07 19:43:32.86 nOn1Thvs.net
>>675
s = sin(x)とおくと
(与式)=(1/a)∫√{a+(1-a)ss}ds
=(s/2a)√{a+(1-a)ss}+(1/2)∫1/√{a+(1-a)ss} ds,
・a>1 のとき
√{(a-1)/a}s = S とおくと
∫1/√{a-(a-1)ss}ds ={1/√(a-1)}∫1/√(1-SS) dS ={1/√(a-1)}arcsin(S),
・0<a<1 のとき
∫1/√{a+(1-a)ss}ds ={1/√(1-a)}{Log|a+(1-a)ss|+(1-a)s},
・a=1 のとき
(与式)=∫ cos(x)dx = sin(x),
713:132人目の素数さん
17/10/07 19:52:16.58 c+Yoymsk.net
>>688
?
714:132人目の素数さん
17/10/07 19:54:03.68 nOn1Thvs.net
>>689 (訂正)
・0<a<1 のとき
∫1/√{a +(1-a)ss}ds ={1/√(1-a)}Log{√[a +(1-a)ss]+ √(1+a)・s}
715:132人目の素数さん
17/10/07 19:58:27.37 cBajcvhO.net
>>690
分からないんですね(笑)
716:132人目の素数さん
17/10/07 20:13:15.43 c+Yoymsk.net
>>692
煽るしか能がないのは悲しむべきね
717:132人目の素数さん
17/10/07 20:23:52.16 H/ABkJFx.net
URLリンク(www.maa.org)
数列 (a_n) を以下で定義する。
a_n := (1/2)^n if n ≡ 1 (mod 2)
a_n := (1/2)^(n-2) if n ≡ 0 (mod 2)
明らかに、 Σ a_n は初項 1, 公比 1/2 の等比級数を並べ替えた級数であるから、
2 に収束する。
a_(n+1) / a_n = (1/2)^(n-1) / (1/2)^n = 2 if n ≡ 1 (mod 2)
a_(n+1) / a_n = (1/2)^(n+1) / (1/2)^(n-2) = 1/8 if n ≡ 0 (mod 2)
であるから、
lim sup a_(n+1) / a_n = 2 > 1
であり、
a_(n+1) / a_n < 1 となるような n が無限に存在する(n が偶数のとき
)から
ratio testでは、収束するか発散するか分からない。
718:132人目の素数さん
17/10/07 20:26:48.05 H/ABkJFx.net
(a_n)^(1/n) = 1/2 if n ≡ 1 (mod 2)
(a_n)^(1/n) = (1/2)^(1-2/n) if n ≡ 0 (mod 2)
であるから、
lim sup (a_n)^(1/n) = lim (a_n)^(1/n) = 1/2 < 1
となり、 root testにより、収束することが分かる。
719:132人目の素数さん
17/10/07 20:31:14.49 tlBi3LcY.net
ピタゴラスとカルロス・スリム・ヘルはどっちの方が凄いですか?
720:132人目の素数さん
17/10/07 20:32:40.17 H/ABkJFx.net
>>694
URLリンク(imgur.com)
↑Mathematicaでチェックしました。
721:132人目の素数さん
17/10/07 20:55:34.49 cBajcvhO.net
>>693
けど、貴方は分からないんですよね?
722:132人目の素数さん
17/10/07 21:01:26.81 c+Yoymsk.net
>>698
これも煽り
723:132人目の素数さん
17/10/07 21:04:07.15 cBajcvhO.net
>>699
けど、貴方には分からない(笑)
724:132人目の素数さん
17/10/07 21:09:26.69 c+Yoymsk.net
>>700
あらら
725:132人目の素数さん
17/10/07 21:11:38.17 c+Yoymsk.net
>>679
ID:3ug4S9PE
ID:lKxjyQqB
は解釈の違いが分かったかな?
726:132人目の素数さん
17/10/07 21:15:44.36 cBajcvhO.net
>>702
貴方の書き込みが0点であり、かつエスパーは存在しないので、貴方の考える正しい解釈、定義など誰も分かりませんよ
727:132人目の素数さん
17/10/07 21:20:52.18 c+Yoymsk.net
>>703
何で問題文読まないの?それと定義が逆だって何の定義か1つ(2つ)しかあり得ない
何も考える気が無いんじゃどうしようもない
>>638
v'=0v''>0∫vdt=0(2,k)で
728:132人目の素数さん
17/10/07 21:21:44.52 c+Yoymsk.net
>>703
ともかく君も0点
729:132人目の素数さん
17/10/07 21:26:31.32 cBajcvhO.net
>>704
何が逆なのか、おおよその予想は当然できていますが、貴方が明言しないのは何故ですか?
また、逆である証拠は示せますか?
730:132人目の素数さん
17/10/07 21:42:42.94 c+Yoymsk.net
>>706
731: ぷ 解いてみて
732:132人目の素数さん
17/10/07 21:45:06.38 cBajcvhO.net
>>707
示せないのですか?
733:132人目の素数さん
17/10/07 21:47:45.02 c+Yoymsk.net
>>708
解けないようですね
734:132人目の素数さん
17/10/07 21:51:05.68 cBajcvhO.net
>>709
貴方も示せないようですね
示せないなら何故逆だと考えたかを教えていただいていいですか?
735:132人目の素数さん
17/10/07 21:54:58.36 cBajcvhO.net
>>693と>>707、>>709が同じ人間の書き込みだと思うと、何か考えてしまうものがありますね
736:132人目の素数さん
17/10/07 21:55:03.95 c+Yoymsk.net
>>710
定義ですから
737:132人目の素数さん
17/10/07 21:56:45.44 c+Yoymsk.net
>>711
ID:cBajcvhO
全部見てみると
何も解こうとしない
何も考える気が無い
泣けるね
738:132人目の素数さん
17/10/07 21:58:18.96 cBajcvhO.net
>>712
何の定義、解釈が逆だと考えたか
何故そう考えかた
教えていただいていいですか?
739:132人目の素数さん
17/10/07 23:21:26.72 cBajcvhO.net
そろそろIDが変わる心配をする時間ですね
740:132人目の素数さん
17/10/07 23:48:34.75 udEbLB1H.net
閻魔大王と神武天皇はどっちの方が凄いですか?
741:132人目の素数さん
17/10/08 00:49:36.44 MpaBQY8Y.net
>>716
神武天皇、加藤、谷川、羽生、渡辺、藤井の順です。
742:132人目の素数さん
17/10/08 02:35:38.40 MpaBQY8Y.net
>>694
部分和をとれば
S_n = Σ[k=1,n] a_k < Σ[k=1,n](1/2)^(k-2)= 4 -(1/2)^(n-2)< 4
単調増加かつ上に有界なので収束する。
743:132人目の素数さん
17/10/08 08:36:16.66 EPCGZi6J.net
基幹講座 数学 微分積分 (基幹講座数学)
砂田 利一
固定リンク: URLリンク(amzn.asia)
↑の本はどうですか?
744:132人目の素数さん
17/10/08 08:39:35.66 4CCYiw8x.net
気持ち悪い
745:132人目の素数さん
17/10/08 12:39:39.69 921rOBNV.net
>>689
本当にありがとうございます。
もう一度、考えてみます。
また質問するかもしれませんが、その時は、宜しくお願いします。
746:132人目の素数さん
17/10/08 17:50:56.37 EPCGZi6J.net
a, b を
a ≧ b ≧ 0
を満たす整数とする。
a, b の最大公約数をユークリッドの互除法で求める際、
余りを計算する回数を R(a, b) と書くことにする。
(F_n) は フィボナッチ数列 0, 1, 1, 2, 3, …, とする。
n を F_n ≧ a ≧ b ≧ 0 を満たす整数とするとき、
R(a, b) ≦ n
が成り立つことを示せ。
747:132人目の素数さん
17/10/08 18:04:05.55 EPCGZi6J.net
F_n ≧ a > b > 0
を仮定すれば、
R(a, b) ≦ n - 2
が成り立つことを示せ。
n ≧ 3 のとき、 R(F_n, F_(n-1)) = n - 2 が成り立つことを示せ。
748:132人目の素数さん
17/10/08 19:16:32.47 fdjrkdb3.net
無になってもう二度と有にならなくて済むのなら今すぐにでも自殺したいが、
そうなれる保障は無いから、なかなか実行に移せない。
そもそも、今が有な時点でまた有になる可能性はあると思う。
一体どうすれば良いんだ・・・・・。
749:132人目の素数さん
17/10/08 19:20:28.80 acRVPW/y.net
>>724
生き続けるしかない
750:132人目の素数さん
17/10/08 20:28:31.78 EPCGZi6J.net
(3*t - t^2) * sin(t) の t = 0 のまわりでの級数展開における係数を求めよ。
751:132人目の素数さん
17/10/09 00:23:40.14 Kt44Cz1i.net
(3t - t^2)sin(t)=(3t - t^2)Σ(-1)^n t^(2n+1)/(2n+1)!
=Σ(-1)^n 3t^(2n+2)/(2n+1)! + Σ(-1)^(n+1) t^(2n+3)/(2n+1)!
752:132人目の素数さん
17/10/09 02:02:52.34 t7NhaD6v.net
n - (n - n / Z * Y) * 0.2 = Z
この式で x=200, Y=133, Z=100 であることがわかっています。
nを求める方法を教えてください。
753:728
17/10/09 02:03:57.77 t7NhaD6v.net
すみません、訂正させて下さい。
n - (n - n / X * Y) * 0.2 = Z
です。お願いします。
754:132人目の素数さん
17/10/09 02:54:53.31 a6Ruo5ry.net
XYn-0.2(XYn-n)=XYZ
XYn-0.2(XY-1)n=XYZ
(XY-0.2(XY-1))n=XYZ
(0.8XY+0.2)n=XYZ
n=XYZ/(0.8XY+0.2)
n=10XYZ/(8XY+2)
n=5XYZ/(4XY+1)
のうちで
755:好きな式にぶちこむ
756:728
17/10/09 03:17:52.38 t7NhaD6v.net
>>730
早速のご回答ありがとうございます。
検算してみたのですが、たとえば下から3番目の式ですと
XYZ = 200 * 133 * 100 = 2660000 ・・・(A)
(0.8XY+0.2) = 0.8 * 200 * 133 + 0.2 = 21280.2 ・・・(B)
n = (A) / (B) = 2660000 / 21280.2 = 124.998
これを元の式に当てはめると
124.998 - (124.998 - 124.998 / 200 * 133) * 0.2 = 100
となりますが、この式の計算結果は 116.623 であり 100 ではありません。
検算方法がおかしいのでしょうか?
757:132人目の素数さん
17/10/09 03:26:41.02 BMPLILPx.net
n/X*Y (左から計算)
を
n/(XY)
と勘違いしていた
Xn-0.2(Xn-Yn)=XZ
0.8Xn+0.2Yn=XZ
(0.8X+0.2Y)n=XZ
n=XZ/(0.8X+0.2Y)
n=10XZ/(8X+2Y)
n=5XZ/(4X+1)
のうちで好きな式にぶちこむ
758:132人目の素数さん
17/10/09 03:27:29.65 BMPLILPx.net
一番下はn=5XZ/(4X+Y)
759:728
17/10/09 03:32:02.83 t7NhaD6v.net
>>732
夜遅くまでお付き合い頂き、ありがとうございます。
XZ = 200 * 100 = 20000 ・・・(A)
(0.8X+0.2Y) = 0.8 * 200 + 0.2 * 133 = 186.6 ・・・(B)
n = (A) / (B) = 20000 / 186.6 = 107.181
107.181 - (107.181 - 107.181 / 200 * 133) * 0.2 = 100
ピッタリ合いました!ありがとうございました。
760:132人目の素数さん
17/10/09 12:59:01.56 7XVwJ0zt.net
Σx^n は (-1, 1) で一様収束しないことを証明せよ。
761:132人目の素数さん
17/10/09 20:46:17.58 SdExnwjd.net
数学者と宇宙飛行士はどっちの方が頭が良いですか?
762:132人目の素数さん
17/10/09 20:46:40.16 q8aDrGm/.net
>>689>>691
>>675で質問したものです。
とても素晴らしい解答をありがとうございます。
ところで
1/a∫√{a+(1-a)s^2}ds
=(1/2a)【s√{a+(1-a)s^2}
+{a/√(1-a)}logⅠs+√[{a/(1-a)}+s^2]Ⅰ】+c
ではないでしょうか?
それから
>>・a>1 のとき
>>√{(a-1)/a}s = S とおくと
>>∫1/√{a-(a-1)ss}ds ={1/√(a-1)}∫1/√(1-SS) dS >>={1/√(a-1)}arcsin(S),
ここで
{1/√(a-1)}∫1/√(1-SS) dS ={1/√(a-1)}arcsin(S)
となっていますが、Sを通常の変数として扱って良いのでしょうか?
SはS=√{(a-1)/a}sin(x)という関数だったはずです。
S=sin(x)と置いて良いのでしょうか?
S=√{(a-1)/a}sin(x)に戻して計算すると、
{1/√(a-1)}∫1/√(1-SS) dS
={1/√(a-1)}∫cos(x)/√{(a/a-1)-sin^2(x)}dx
となってしまいます。
ご回答を宜しくお願い致します。
763:132人目の素数さん
17/10/09 20:54:57.89 7XVwJ0zt.net
>>735
|x| < 1 / lim sup |a_n|^(1/n)
ならば
Σa_n*x^n は一様収束する。
↑は正しいか?
の答えは「正しくない」ですね。
764:132人目の素数さん
17/10/09 20:57:49.48 q8aDrGm/.net
>>737の訂正
×ところで
1/a∫√{a+(1-a)s^2}ds ・・・
○ところで0<a<1の場合
1/a∫√{a+(1-a)s^2}ds ・・・
それから
=(1/2a)【s√{a+(1-a)s^2}
+{a/√(1-a)}log?s+√[{a/(1-a)}+s^2]?】+c
と?が出てしまいましたが、この?のところは絶対値記号の縦線です。
765:132人目の素数さん
17/10/09 21:01:06.41 SdExnwjd.net
コンピュータ技術者は数学に詳しいですか?
766:132人目の素数さん
17/10/09 21:18:57.54 yFYs86n6.net
人による
767:132人目の素数さん
17/10/10 00:45:14.80 h4u4sSCs.net
>>736
もちろん興行会社です。
URLリンク(www.foxmovies-jp.com)
768:132人目の素数さん
17/10/10 03:12:02.11 h4u4sSCs.net
>>642
マクローリン展開で
x^(-x)= e^{-x・log(x)}= Σ[n=1,∞]{1/(n-1)!}{-x・log(x)}^(n-1)
よって
∫[0→1]x^(-x)dx
= Σ[n=1,∞]{1/(n-1)!}∫[0→1]{-x・log(x)}^(n-1)dx
= Σ[n=1,∞]1/(n^n){1/(n-1)!}∫[0→∞]t^(n-1)e^(-t)dt
= Σ[n=1,∞] 1/(n^n)
*) x = e^(-t/n)とおいた。
769:132人目の素数さん
17/10/10 03:26:27.58 h4u4sSCs.net
>>737
S=√{(a-1)/a}sin(x)とおいたので、同じ文字を使ってはいけません。
S=sin(y)とおくと、
∫1/√(1-SS) dS =∫cos(y)/√{1-sin(y)^2}dy = ∫ dy = y = arcsin(S),
770:132人目の素数さん
17/10/10 12:09:20.81 j/MGWuQk.net
松坂和夫著『解析入門2』を読んでいます。
アーベルの定理の証明の直前に以下の記述があります。
「以下では簡単の
771:ため R = 1 として論ずる。一般に整級数 Σa_n * x^n の収束半径が R のとき、 x を x/R におきかえて Σa_n/R^n * x^n を考えれば、この整級数の収束半径は 1 であるから、はじめから R = 1 と仮定しても議論の一般性は失われない。」 明らかに、間違っていますね。 正しくは、以下ですね: 「x を R*x におきかえて Σa_n*R^n * x^n を考えれば」
772:132人目の素数さん
17/10/10 12:58:19.72 SrLyS62r.net
こいつの頭が明らかに間違ってそう
773:132人目の素数さん
17/10/10 13:25:33.01 j/MGWuQk.net
3 ≦ n とする。
n 次正方行列 A_n = (a_{i, j}) を以下で定義する。
a_{1, 1} = 1, a_{1, 2} = 1, 第 1 行の他の成分 = 0
2 ≦ i ≦ n - 1 とする。
a_{i, i-1} = a_{i, i} = a_{i, i+1} = 1, 第 i 行の他の成分 = 0
a_{n, n-1} = a_{n, n} = 1, 第 n 行の他の成分 = 0
det(A_n) を計算せよ。
774:132人目の素数さん
17/10/10 15:00:48.49 GS9SgjOk.net
扇形の弧の長さを求める方法に
L = 2r * π * (180θ/π)/360°
= 2rπ * θ/2π = 2rπθ/2π
= rθ
L = rθより、θ = L/r
というのがあったんですけど、
L = rθはどういう経緯でθ = L/r に変換されるんでしょうか。
これは移項によるものなんでしょうか?よろしくお願いします。
775:132人目の素数さん
17/10/10 17:02:03.66 1KPCDrtH.net
>>744
了解しました。
ところで>>691と>>737>>739では、0<a<1の場合の答が違うのですが、これはどうでしょうか?
776:132人目の素数さん
17/10/10 18:51:16.24 uiwamXA9.net
数学&物理学&計算機科学軍 vs 哲学&神学&宗教学軍
ファイッ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
777:132人目の素数さん
17/10/10 19:01:18.15 qGzzWouP.net
>>744
>>675で質問したものです。
私もうっかりしてましたが、それ以前に>>689はcos(x)が抜けてませんか?
778:132人目の素数さん
17/10/10 21:56:59.86 bP691gSB.net
ds=cosxdx
779:ウンピー
17/10/10 23:04:28.81 D6dE2obF.net
41%の確率で当選するクジが23回が引いて外れる確率って何%ですか?
780:132人目の素数さん
17/10/10 23:22:37.82 b+AZraNZ.net
わからないんですね(笑)
781:132人目の素数さん
17/10/11 00:18:47.25 VVa9c/LF.net
(.59)^23 = .0005 %
782:132人目の素数さん
17/10/11 00:32:06.06 acXKCTJa.net
>>747
a_{i,i}= 2x, (本問では x=1/2)
a_{i,j}= 1 (|i-j|= 1 )
とする。
D_n(x)= det(A_n)とおく。
1行目で展開すると漸化式が出る。
D_{n+1}= 2x D_n - D_{n-1},
(和積公式に似てる・・・("^ω^)
D_1(x)= 2x,
D_2(x)= 4xx-1,
これより
D_n(x)= U_n(x), 第2種チェビシェフ多項式
U_n(cosθ)= sin{(n+1)θ}/sinθ,
本問では θ=±π/3 だから
D_n = U_n(1/2)
= sin{(n+1)π/3}/sin(π/3)
=(2/√3)sin{(n+1)π/3},
783:132人目の素数さん
17/10/11 00:36:25.28 acXKCTJa.net
>>747
D_1 = 1,
D_2 = 0,
D_3 = -1,
以後は
D_{n+3}= - D_n,
で繰り返す。
784:132人目の素数さん
17/10/11 00:43:46.28 bcH7G9G3.net
二項定理を使って
x=Σ[k=0,n](2n+1)Ck
の時のxを求めたいのですが、どなたか回答お願いします。
785:132人目の素数さん
17/10/11 00:55:13.15 acXKCTJa.net
>>758
2x = Σ[k=0,n](2n+1)_C_k + Σ[k=0,n](2n+1)_C_(2n+1-k)
= Σ[k=0,2n+1](2n+1)_C_k
=(1+1)^(2n+1)
= 2^(2n+1),
x = 2^(2n)= 4^n,
786:132人目の素数さん
17/10/11 03:41:57.74 xb6VTS04.net
>>753誰か解る方いませんか?
787:132人目の素数さん
17/10/11 05:10:21.02 acXKCTJa.net
>>756
ポリエン C_n H_{n+2}のπ電子準位を簡単に概算するときに
使いますな。
�
788:|リアセチレンともいいますが。
789:132人目の素数さん
17/10/11 07:18:30.02 YwkestEE.net
1 / ln x = 1 / ln 2 + 1 / ln 3 + 1 / ln 4 + ... + 1 / ln nの時、xの値はいくらか?
この問題が解けません。教えてくださいm(_ _)m
790:132人目の素数さん
17/10/11 09:48:46.47 t54YPMN3.net
オイラー定数やe+πというような数学定数が有理数であると示されたらq/pなるpとqは求まるんでしょうか
791:132人目の素数さん
17/10/11 10:40:05.82 HgIAH4lS.net
アーベルの定理ですが、なぜ以下のように書かないのでしょうか?
x = r > 0 で級数 Σa_n * r^n が収束していれば、 Σa_n * x^n は区間 (-r, r) で収束する。
(-r, r] で定義された関数 f(x) = Σa_n * x^n は x = r で連続である。
792:132人目の素数さん
17/10/11 11:54:04.36 u5OtejXr.net
算数問題なんでしょうか?
b+c+d=18
b+c+f=19
c+d+f=18
これで、b,c,d,f の数値を求められますか?
解法を教えて下さい
793:132人目の素数さん
17/10/11 13:09:00.27 JGswejKG.net
b=f=d+1, c=17-2d
794:132人目の素数さん
17/10/11 14:00:26.48 EEiBQN0U.net
AB=2(A-2)(B-2)
↓
A=4+8/(B-4)
これの持っていきかたがわからないんですが、途中どうなりますか?
795:132人目の素数さん
17/10/11 14:04:17.17 4gMCQUWS.net
算数板かな?
796:753
17/10/11 14:14:59.30 xb6VTS04.net
解る方居ないようなのでしめますね
797:729
17/10/11 14:57:24.49 cXXCBauC.net
>>767
それ間違ってね?
798:132人目の素数さん
17/10/11 15:09:46.54 u5OtejXr.net
>>766
どもです。
でも、なんで
>>766
になるか解りません
頭の中の途中式を教えて下さい
799:132人目の素数さん
17/10/11 15:15:31.16 u5OtejXr.net
b+c+d=18
b+c+f=19
b=18-(c+d)
b=19-(c+f)
とかは、あってます?
それでも、わからないです
>>768
マジで、さんすう板があれば
そこに行くような質問ですね。
800:132人目の素数さん
17/10/11 15:22:09.30 EEiBQN0U.net
>>770
本にそう載ってるんだけど、ならないですよね?
AとBに適当な数はめてみると確かに合うんですが…
801:132人目の素数さん
17/10/11 15:49:44.67 Mns4pPjX.net
P(X)を冪集合として写像s:P(X)×P(X)→P(X)を
s(A,B)=(A∪B)-(A∩B), A,B∈P(X) と定めるとき
ベクトル空間の公理のうち和に関する公理を満たすことを示せ
またこのとき0と逆ベクトルに対応する要素は何か?
802:132人目の素数さん
17/10/11 16:00:04.73 +19mPQDu.net
笑
803:132人目の素数さん
17/10/11 16:28:16.76 4RhSgzf6.net
AB=2(A-2)(B-2)
AB = 2(AB-2A-2B+4)
AB = 2AB-4A-4B+8
0 = AB-4A-4B+8
0 = A(B-4)-4B+8
4B-8 = A(B-4)
4(B-4)+8 = A(B-4)
4+8/(B-4) = A
804:132人目の素数さん
17/10/11 16:47:38.96 xQ4Pu0AN.net
>>774
和って?sのこと?ちゃんと書いてよ
805:132人目の素数さん
17/10/11 16:51:19.51 xQ4Pu0AN.net
つかコレだとベクトル空間持ち出すわけわかんねー
単にPAが加法群だって言わせたらいいだけじゃん
806:132人目の素数さん
17/10/11 16:53:27.82 xQ4Pu0AN.net
あそうかF_2上のベクトル空間だって言わせたいのか
なる~
807:132人目の素数さん
17/10/11 17:15:16.99 Mns4pPjX.net
先に抽象ベクトル空間の問題と書いた方が良かったですね
申し訳ありません
808:132人目の素数さん
17/10/11 17:33:48.60 EEiBQN0U.net
>>776
あざーす!
809:132人目の素数さん
17/10/11 17:54:45.05 imWJNFIv.net
問題のだしっこ
810:132人目の素数さん
17/10/11 17:58:53.79 JGswejKG.net
善哉
811:132人目の素数さん
17/10/11 18:35:24.22 c0zjB6hR.net
sgn(x)を解析接続するとどうなるんですか?
sgn(Rex)でいいんですか?
812:132人目の素数さん
17/10/11 18:41:40.61 PBLxDg/9.net
>>762
解けまつよ。
x = e^{1/[1/ln(2)+1/ln(3)+ …… + 1/ln(n)]}
813:132人目の素数さん
17/10/11 19:02:43.58 ienMogdH.net
>>784
そもそもそれは適用外
814:132人目の素数さん
17/10/11 19:22:46.12 PBLxDg/9.net
>>762
x ≒ e^{1/Li(n)}
Li(n)= ∫[2,n] 1/log(z) dz ={n/log(n)}{1 + 1!/log(n) + 2!/log(n)^2 + …}
815:132人目の素数さん
17/10/11 19:45:33.02 HgIAH4lS.net
基幹講座 数学 微分積分
砂田 利一
固定リンク: URLリンク(amzn.asia)
↑この本ですが、何の役にも立たないくだらない本のようでした。
序文と参考文献に、高木貞二という名前が出てきますが、高木貞二とは誰でしょうか?
816:132人目の素数さん
17/10/11 19:49:39.08 HgIAH4lS.net
>>788
それと参考文献が情報量ゼロでした。
微分積分とは関係のない自分の著作と現在の大学の同僚の本が
挙げられているのが目につきました。
817:132人目の素数さん
17/10/11 19:51:34.21 HgIAH4lS.net
>>788
それと序文が意味のない長文です。
818:132人目の素数さん
17/10/11 20:03:17.75 4gMCQUWS.net
意味のない書き込みしかできない人が、人の本の文章を意味がないと批判するのは何かのジョークですか?
つまんないですよ
819:132人目の素数さん
17/10/11 20:21:06.89 ienMogdH.net
ちゃんとした大学に行く機会があれば
この人ももう少しまともな書き込みしたかもしれないね
820:132人目の素数さん
17/10/11 20:54:20.16 BBUVopz1.net
病気は治らないだろ
821:132人目の素数さん
17/10/11 21:00:13.94 thiPv21l.net
>>786
そうですか
ありがとうございます
822:132人目の素数さん
17/10/11 22:08:23.37 VVa9c/LF.net
>>765
b+d=18-c
b+f=19-c
d+f=18-c
辺々足して2で割ると
b+d+f=(55-3c)/2
これと第1式、第2式、第3式との差を
それぞれとって
f=(19-c)/2
d=(17-c)/2
b=(19-c)/2
823:132人目の素数さん
17/10/11 22:34:34.17 qkrUva81.net
ゴミならくれよ
まさか買いもせずに文句だけ言ってるとかはないよな
824:132人目の素数さん
17/10/11 23:05:40.26 fmj8TdpR.net
乞食も参戦の模様
825:132人目の素数さん
17/10/11 23:05:56.82 HgIAH4lS.net
松坂和夫著『解析入門5』ですが、
p.80に「テイラー(Tayror)の定理」などとと書かれています。
826:132人目の素数さん
17/10/11 23:11:30.10 FHQrRiBV.net
>>780
ベクトル空間の問題にする必要が無いってことよ
827:132人目の素数さん
17/10/11 23:11:34.00 4gMCQUWS.net
どうでもいい誤植の報告は心底要らないです
828:132人目の素数さん
17/10/11 23:58:47.24 BsXPvCcd.net
などとと
829:132人目の素数さん
17/10/12 00:19:07.28 8MrJICvq.net
>>771
式1と式2の左側の違いはdがfに変わっているだけだからfはdよりも1大きい
式1と式3はbがfに変わっているだけだからb=f
b,c,d,f は正の整数という条件があったとしても答えは8パターンあるので決めらんない
830:132人目の素数さん
17/10/12 01:54:48.00 esD3VYKn.net
おしぇーてURLリンク(i.imgur.com)
831:132人目の素数さん
17/10/12 02:22:05.90 XRTxKb5K.net
>>803
AとBが同値関係にあることを A◎B と書くことにしてt、
最初の問では
・A◎A を示す
・A◎B ⇒B◎A を示す
・A◎BかつB◎C⇒C◎A を示す
どれも簡単な計算式の操作
Xが4元を持つとき、2元からなるXの部分集合の間で推移律が成り立たない例を作る
832:132人目の素数さん
17/10/12 04:45:11.98 saIb7jMi.net
>>798
なおときおり「Tailor展開」と誤記している人があるが、これでは「洋服屋展開」になってしまう。
~ 数セミ増刊「100人の数学者」日本評論社(1989)p.78(テイラー) ~
833:132人目の素数さん
17/10/12 04:55:15.71 r3IcUw8p.net
誰か円の内角の和を教えてくれ
834:132人目の素数さん
17/10/12 06:32:34.66 SJ
835:pqtPNt.net
836:132人目の素数さん
17/10/12 08:49:49.97 IVBPcmrA.net
M坂和夫というのはそんなにレベルの高い数学者ではなかった。
語り口は丁寧だが、あれは「わかってる人の丁寧」じゃあないね
数学を理解する力も浅く、教える力も弱い。
そういう人の本に粘着して欠点をあげつらうのは
サディズム以外の何物でもないと思うよ。
837:132人目の素数さん
17/10/12 09:39:46.36 qdxU76Qd.net
>そんなにレベルの高い数学者ではなかった。
て言うか、数学者というほどのレベルではなかった。と思うよ。
(まあ、時代の違いを加味すると俺もそんなとこかもしれんが)
後の意見には同意!
838:132人目の素数さん
17/10/12 09:54:56.67 uHMGsKLb.net
>>808
ずいぶん偉そうだなw
839:132人目の素数さん
17/10/12 10:00:35.38 qdxU76Qd.net
うん、偉い人じゃないの
840:132人目の素数さん
17/10/12 10:11:53.46 KdzIdWhi.net
どうでもいいが松坂アスペ君にのるアホ
841:132人目の素数さん
17/10/12 10:37:07.11 uHMGsKLb.net
>>811
お前がだよw
ここがね
>>808
>あれは「わかってる人の丁寧」じゃあないね
>数学を理解する力も浅く
842:132人目の素数さん
17/10/12 11:59:22.58 qFha4xIg.net
松坂和夫著『解析入門2』を読んでいます。
「a_n ≧ 0 (n = 1, 2, …) とし、
b_n = (1 + a_1) * (1 + a_2) * … * (1 + a_n)
とおく。級数 Σa_n の収束・発散と数列 (b_n) の収束・発散とは一致することを証明せよ。」
という問題があります。
Σa_n 収束 ⇒ (b_n) 収束
の証明がおかしいです。
「Σa_n が収束すれば、 a_n → 0 で、 lim log(1 + a_n) / a_n = 1 であるから、
Σ log(1 + a_n) も収束。」
と書いています。
a_n = 0 となるような n が無限に存在する場合にはまずいですよね。
f(x) = x - log(1 + x)
f'(x) = 1 - 1 / (1 + x) ≧ 0 (x ≧ 0)
だから
f(x) ≧ f(0) = 0 (x ≧ 0)
である。
よって、
a_n ≧ log(1 + a_n) (n = 1, 2, …, n)
よって、
Σa_n 収束 ⇒ (b_n) 収束
としなければだめですよね。
843:132人目の素数さん
17/10/12 12:06:26.69 qFha4xIg.net
>>808
松坂和夫さんの本は別に悪い本ではないと思います。
ただ、級数のところは Rudin の本をほぼ丸写ししていますね。
それも、Rudin のオリジナリティーが発揮されているであろう箇所を丸写ししています。
複素関数論は Ahlfors を参考にしていると書いているので、そこも似たような
状況なのではないかと推測します。
悪い本といえば、小林昭七さん、砂田利一さんらの本のことだと思います。
小林昭七さんは比較的有名な数学者だと思いますが、小林さんの微分積分の本を
読んで「分かっている人」が書いた本だと思う人がいるでしょうか?
「数学を理解する力も浅く、教える力も弱い。」人だとみな思うのではないでしょうか?
844:132人目の素数さん
17/10/12 12:46:34.59 uRw3SxoL.net
>>815
貴方の頭が弱いからでは?
845:132人目の素数さん
17/10/12 12:50:28.55 4VI+8AGQ.net
なぜ何もないのではなく、何かがあるのでしょうか?
これはリーマン予想を証明するのより遥かに難しいのではないでしょうか?
846:132人目の素数さん
17/10/12 12:51:39.82 Y6xYw2zt.net
使い古されたコピペ
847:132人目の素数さん
17/10/12 15:09:47.94 qFha4xIg.net
2項級数が x = -1, 1 で収束するか否かについて書いてある本はありますか?
松坂和夫さんの『解析入門2』には書いてあります。
848:132人目の素数さん
17/10/12 15:15:05.87 EStcVAtU.net
1行目で質問して2行目で答えるスタイル
849:132人目の素数さん
17/10/12 15:18:36.93 4VI+8AGQ.net
宇宙飛行士は超絶エリートですか?
850:132人目の素数さん
17/10/12 15:26:33.17 onGpjLp/.net
うんこヘマラヤの妄想
851:132人目の素数さん
17/10/12 15:35:48.11 4VI+8AGQ.net
フィールズ賞受賞者と最高裁長官はどっちの方が頭が良いのでしょうか?
852:132人目の素数さん
17/10/12 17:48:11.22 sAH6k+cP.net
何この人、認知症?怖い
853:132人目の素数さん
17/10/12 19:15:57.73 7KGwbcwP.net
ヘマラヤと松坂君と劣
854:等感の中で一番賢いのは誰ですか?
855:132人目の素数さん
17/10/12 19:28:33.31 0NKgpsEq.net
日本人は全員ゴミ
856:132人目の素数さん
17/10/12 20:44:26.23 XSyb1nQ+.net
>>825
同一人物である可能性は?
857:132人目の素数さん
17/10/12 22:07:15.82 l3bawjyR.net
別スレに書きましたが過疎過ぎて反応がないのでここに書かせて下さい
塾で出された問題ですがさっぱり分かりません
これって具体的に求まりますかね?
【問題】
f(x)、g(x)は次の等式を満たす整式とする
(x+2)f(x)+(x-1)^2 g(x)=g(x-3)
このとき f(x)を(x-1)^2で割った余り及びg(x)を(x+2)で割った余りを求めよ
858:132人目の素数さん
17/10/12 22:13:07.91 H8zsmg3Q.net
無限大のものを消滅させることって可能ですか?
また、可能だとしたらどんな感じで消滅させるのでしょうか?
でも、消滅させられるってことは、有限ってことになりますよね・・・・・?
どうなんでしょう?
859:ル.ヌー
17/10/12 22:21:23.99 Hbkmuqaq.net
f(z)=z/sinz,z∈Cにおいて,
(1) z=0はf(z)の除去可能特異点であることを示せ。
(2) f(z)の極をすべて求めよ、また、極での留数を求めよ。
(3) z=0まで定義域を拡大したf(z)のz=0におけるマクローリン展開の2次の項までを求め よ。
(1).(2).(3)の解答をお願い致します。 👀
Rock54: Caution(BBR-MD5:ae2afb6cd11f3e92f5cd12f037b4c3ac)
860:132人目の素数さん
17/10/12 22:30:49.20 Hbkmuqaq.net
f(z)=z/sinh z,z∈Cにおいて,
(1) f(z)はC上正則であることを示せ。
(2) z=0はf(z)の除去可能特異点であることを示せ。
(3) z=0まで定義域を拡大したf(z)のz=0におけるマクローリン展開の2次の項までを求めよ。
(1).(2).(3)の解答をお願い致します。
861:132人目の素数さん
17/10/12 22:40:53.36 QRJc344P.net
どなたか答えを教えてください。
URLリンク(i.imgur.com)
862:132人目の素数さん
17/10/12 23:40:47.03 uHMGsKLb.net
>>828
解は任意ね
つまり
問題とは言えない
863:132人目の素数さん
17/10/13 00:33:01.92 cW10d3wP.net
覆面算です
SUN
LOSE
UNTIE
BOTTLE
ELISION
NINETEEN
NONENTITY
EBULLIENT
+)INSOLUBLE
NEBULOSITY
864:132人目の素数さん
17/10/13 00:39:20.11 J+azbOaN.net
面白問題スレへどうぞ
865:132人目の素数さん
17/10/13 00:40:03.43 J+azbOaN.net
>>830
福田カズ君?
866:132人目の素数さん
17/10/13 02:11:33.64 OUKo6kqm.net
>>804
なるほど、助かった!
867:132人目の素数さん
17/10/13 10:07:21.75 utILla7I.net
>>833
有り難うございます
868:132人目の素数さん
17/10/13 15:14:09.24 dW66WeDf.net
上野健爾著『複素数の世界』を読んでいます。
p.194の参考書のところに、
「L. Ahrfors」
などと書かれています。
869:132人目の素数さん
17/10/13 15:17:25.38 JmPvGaJe.net
まーた難癖かよ
870:132人目の素数さん
17/10/13 16:57:37.89 bAr2djX8.net
>>752
>>675で質問したものです。
>>689は、与式、sと記述されてるので、sin(x)を略して記述したものだと勘違いしてました。
よく見るとdsになってます。私の間違いでした。
教えて頂いているのに、恐縮なのですが、私のような馬鹿でも分かる記述をして頂けたらありがたいです。
>>737の私の
1/a∫√{a+(1-a)s^2}ds
=(1/2a)【s√{a+(1-a)s^2}
+{a/√(1-a)}log?s+√[{a/(1-a)}+s^2]?】+c
という解は与式のcos(x)が抜けてるものを計算したので間違いでした。
(?マークは絶対値の縦線)
それから>>691の
・0<a<1 のとき
∫1/√{a +(1-a)ss}ds ={1/√(1-a)}Log{√[a +(1-a)ss]+ √(1+a)・s}
はどうやって導出したのでしょうか?
また最後の項は、√(1-a)・s
ではないでしょうか?
最後の項を直すと、おそらく正しいと思います。
私が計算すると、
∫1/√{a+(1-a)s^2}・ds={1/√(1-a)}∫1/√{(a/1-a)+s^2}・ds
s+√{(a/1-a)+s^2}=tと置くと
s=[t^2-{a/(1-a))}]/2t
ds={t^2+(a/1-a)}/2t^2・dt
よって与式は
{1/√(1-a)}∫【1/√〔{a/(1-a)}+[t^2-{a/(1-a)}]^2/(4t^2)〕】・[t^2+{a/(1-a)}]/2t^2・dt
={1/√(1-a)}log〔s+√[s^2+{a/(1-a)}]〕+c
となってしまうのですが、どこに間違いがあるのでしょうか。
またs=√{a/(1-a)}・tanθと置いた方法でも全く違う解が出てしまいます。
導出を教えて頂けないでしょうか?
871:132人目の素数さん
17/10/13 17:42:59.08 XMHlrXdN.net
f(z)=z/sinz,z∈Cにおいて,
(1) z=0はf(z)の除去可能特異点であることを示せ。
(2) f(z)の極をすべて求めよ、また、極での留数を求めよ。
(3) z=0まで定義域を拡大したf(z)のz=0におけるマクローリン展開の2次の項までを求めよ。
(1).(2).(3)の解答をお願い致します
872:132人目の素数さん
17/10/13 20:14:33.18 XMHlrXdN.net
830 は福田カズですけど 問題の解答は、頂けないのですか?
873:132人目の素数さん
17/10/13 22:55:41.04 3HtQr/J7.net
法華経と聖書はどっちの方が凄いですか?
874:132人目の素数さん
17/10/13 23:16:36.73 wpcFMDqv.net
dx分のdxの2自乗がxと答えたのですが、回答だと2xになっています
2はどこからきたんですか?
875:132人目の素数さん
17/10/13 23:49:30.53 kV3HhDTH.net
n^2 - m(m+1)/2 = 2 を満たす正の整数(m,n)が存在しないことの証明を御願い致します
876:132人目の素数さん
17/10/14 00:44:01.31 jpWhavfj.net
>>845
{(x+h)^2-x^2}/h=(x^2+2hx+h^2-x^2)/h=2x+h→2x(h→0)
877:132人目の素数さん
17/10/14 01:01:49.74 4clY7sjY.net
>>847
hってなんですか?
878:132人目の素数さん
17/10/14 01:11:14.30 jpWhavfj.net
なんだろ?
教科書にあった式を適当に省略してかいただけなので、あとは自分で調べてちょ
879:132人目の素数さん
17/10/14 01:13:09.27 4clY7sjY.net
dxの自乗をdxで割ったら、dとx1個が約分されますよね?
xだけが残るはずですが、2はどこから来るんですか、という質問です
880:132人目の素数さん
17/10/14 03:25:27.67 NjrsV7WB.net
(d×x×x)÷(d×x)=x
なるほど確かに君は正しい
きっと回答が間違ってるのだろうね
881:132人目の素数さん
17/10/14 04:43:42.90 R16ycQzr.net
1/2の階乗を部分積分を使って解ける事を最近知りました。解けるという事実は特に興味はないのですが階乗って自然数以外の時、どういう意味があるのでしょうか?というか自然数じゃなくてもいいのでしょうか?
882:132人目の素数さん
17/10/14 05:57:14.32 bhk6txZ8.net
任意のnで
∫[0,1] (xlogx)^n dx = n!(-1)^n/(n+1)^(n+1)
が成り立つことの証明を教えてください
883:132人目の素数さん
17/10/14 06:43:44.33 NeZ/jqZV.net
>>852
階乗じゃなくてΓ関数な
884:132人目の素数さん
17/10/14 07:34:29.81 9j4Cf2uu.net
dx=(x+h)-x=h
dx^2=(x+h)^2-x^2=2xh+h^2
dは小さな区間を表すからh→0に近づける
dx^2/dx=2x+h→2x
df(x)=f(x+h)-f(x) h→0
885:132人目の素数さん
17/10/14 10:15:13.14 CDOAZ8iY.net
リーマン球面って重要ですか?
本を読んでいると、なんか ∞ を合理化するために存在するようにしか思えません。
886:132人目の素数さん
17/10/14 10:38:48.31 NeZ/jqZV.net
まあそうよ
無限大での正則性を定義したい
887:132人目の素数さん
17/10/14 11:21:53.28 P95wvq7Q.net
どの方向の無限大も区別しないなんて
不合理のような気もしないではないけど
逆にそれが合理的だという点を
驚き賞賛しながら楽しく学べばいい
批判するのは簡単だけどな
888:132人目の素数さん
17/10/14 12:29:10.21 NeZ/jqZV.net
実数で+0と0と-0を区別しないようなもの
889:132人目の素数さん
17/10/14 12:31:27.82 4clY7sjY.net
↑これが数学板の実力です↑
専門板なのに異常にレベルが低い
せいぜい数学の少しできる高校生レベル
890:132人目の素数さん
17/10/14 12:36:33.92 NeZ/jqZV.net
>848 名前:132人目の素数さん Mail:sage 投�
891:e日:2017/10/14(土) 01:01:49.74 ID:4clY7sjY >>>847 >hってなんですか? >850 名前:132人目の素数さん Mail:sage 投稿日:2017/10/14(土) 01:13:09.27 ID:4clY7sjY >dxの自乗をdxで割ったら、dとx1個が約分されますよね? >xだけが残るはずですが、2はどこから来るんですか、という質問です >860 名前:132人目の素数さん Mail:sage 投稿日:2017/10/14(土) 12:31:27.82 ID:4clY7sjY >↑これが数学板の実力です↑ >専門板なのに異常にレベルが低い >せいぜい数学の少しできる高校生レベル 下らんこと書いとらんで勉強にいそしみ賜え
892:132人目の素数さん
17/10/14 12:39:51.67 4clY7sjY.net
実数において、+0や-0はどのように定義されるんですか?
893:132人目の素数さん
17/10/14 12:42:15.70 NeZ/jqZV.net
0に符号を付けたのが+0と-0
894:132人目の素数さん
17/10/14 12:47:32.98 NXqNNRVl.net
後藤さん?
895:132人目の素数さん
17/10/14 13:04:13.38 HwFJEqND.net
>>856
読んでねーのが丸分かり
896:132人目の素数さん
17/10/14 13:39:46.05 9pQwxPIT.net
>>862
まーた劣等感婆かよ
邪魔だし不愉快だからいなくなってくれ
897:132人目の素数さん
17/10/14 13:40:58.47 U/KcWapL.net
>>864
おいおい、私は最近ここには書いていないぞ。
最近、間違った人物特定されたのを見たのはこれで2回目だ。
898:132人目の素数さん
17/10/14 13:51:14.65 NXqNNRVl.net
そういえば後藤さんにしてはやけに短文だし、文字列の模様も句点の扱いも違うな
899:132人目の素数さん
17/10/14 13:57:57.78 W6mvcj2z.net
>>860
私の様なレベルの低い者が、質問してるのですから、
レベルの低い質問になってしまいます。
解答者がレベルが低いのではないと思います。
900:132人目の素数さん
17/10/14 14:01:00.26 W6mvcj2z.net
>>860
因みに私は>>675で質問した者です。
私のレベルが低いだけで解答者のレベルは高いと思います。
901:132人目の素数さん
17/10/14 14:57:11.78 4clY7sjY.net
ある無矛盾な公理系τの任意のモデルに対してある論理式φが常に真となるならば、τからφがLKにおいて証明可能となることを示せ
ここの回答者は何度貼ってもこの問題はわからないですからね
902:132人目の素数さん
17/10/14 15:01:59.73 o183pcNN.net
>>871
その質問の間抜けさに気付かないのが君が馬鹿にされる数多の理由の一つ
903:132人目の素数さん
17/10/14 15:03:21.90 4clY7sjY.net
間抜けな質問だろうがなんだろうが、わかるなら答えが返って来るはずですね
904:132人目の素数さん
17/10/14 15:04:45.83 o183pcNN.net
言っても分からんか
普通に教科書読めで仕舞いだ
905:132人目の素数さん
17/10/14 15:05:09.23 bhk6txZ8.net
>>853
お願いします
906:132人目の素数さん
17/10/14 15:06:18.55 4clY7sjY.net
教科書レベルなのはわかってますが、それすらわからないのがここの人たちですよね?
907:132人目の素数さん
17/10/14 15:09:44.80 o183pcNN.net
ここまで言ってもまだ分からん辺り、数学の教科書を読んだことがないんだろうな
「教科書レベルすら」
いやいや、「教科書レベルだから」君の要求は間抜けなんだよ
こう書くとまた誤解するんだろうけどw
908:132人目の素数さん
17/10/14 15:11:05.75 4clY7sjY.net
でも、あなたは実際解けって言われても解けませんよね?
909:132人目の素数さん
17/10/14 15:13:56.41 o183pcNN.net
思った通りの誤解っぷりだね
910:132人目の素数さん
17/10/14 15:15:04.19 4clY7sjY.net
わからないんですね(笑)
わかってるなら数行で終わることを書かないということは、そういうことです
911:132人目の素数さん
17/10/14 15:16:05.85 o183pcNN.net
とうとう決定的なミスを犯したね
「わかってるなら数行で終わること」
そういうことだよ、君の誤解は
912:132人目の素数さん
17/10/14 15:16:51.78 4clY7sjY.net
そうやって反論してるうちに回答かけますよね?
もし本当にわかってるなら(笑)
913:132人目の素数さん
17/10/14 15:19:17.09 o183pcNN.net
反論?君は議論でもしてるつもりだったのかw
俺は間抜けをからかうことで、他の人にも分かりやすく君の間抜けっぷりを晒しただけだぞ
914:132人目の素数さん
17/10/14 15:20:12.87 4clY7sjY.net
あなたの今までしてきたレス数使えば答えは完成しますね
答えではなく煽りを書き込むということは、わからないということです…(笑)
915:132人目の素数さん
17/10/14 15:20:51.02 o183pcNN.net
なんにせよ、
「わかってるなら数行で終わること」
この認識を改めない限り他の人との会話にはついていけない
高校スレに帰れって何度も言われたことあるだろ?
916:132人目の素数さん
17/10/14 15:23:13.27 4clY7sjY.net
任意の整合的な理論に対してそれを充足
917:させるような少なくとも一つの解釈が存在する、ということを既知とします これでも数行で答え書けないんですか?
918:132人目の素数さん
17/10/14 15:28:03.88 o183pcNN.net
いよいよ切羽詰ってるようだね
今の君は何が何でも「わかってるなら数行で終わること」という失言を取り繕おうとしてるだけだ
それを既知とする、ほんの「教科書レベル」が、一体どこにある?
919:132人目の素数さん
17/10/14 15:28:56.43 4clY7sjY.net
ここにあります
こんな簡単な問題なんですから、もちろんわかりますよね?
次のレスで回答以外のレスが返ってきた場合、あなたはわからないのだと判断します(笑)
920:132人目の素数さん
17/10/14 15:32:01.54 o183pcNN.net
ないよ、そんなものは
せめて本当に存在する教科書でも持ってこい
自明に同値な条件を書いて「証明せよ」とは、これまた間抜けだと気付いてない
921:132人目の素数さん
17/10/14 15:41:06.88 ikRP/D0j.net
>>889
わからないんですね(笑)
わからないレベルの低い人の相手をする暇はないですね
922:132人目の素数さん
17/10/14 16:26:43.80 NeZ/jqZV.net
>>886
数行で終わるって何で?
相当掛かると思うけど
923:132人目の素数さん
17/10/14 16:27:06.34 4clY7sjY.net
>>891
わからないんですね(笑)
924:132人目の素数さん
17/10/14 16:30:58.81 NeZ/jqZV.net
>>892
教えてください
925:132人目の素数さん
17/10/14 16:31:45.19 4clY7sjY.net
>>874さんによると、教科書を読め、だそうです(笑)
926:132人目の素数さん
17/10/14 16:33:56.19 NeZ/jqZV.net
>>894
それは知らないしどうでもいい
数行で書けるんなら書いてみてよ
927:132人目の素数さん
17/10/14 16:37:08.36 Zd83HJfE.net
じゃ、まずあなたの回答から見たいですね
あなたの場合は、問題文理解してるかすら怪しいですから
928:132人目の素数さん
17/10/14 16:39:45.98 o183pcNN.net
>>896
>>877
おそらく既に全ての応答パターンが出尽くしてるんじゃないかな
君の反応は余りにも型通りだから
929:132人目の素数さん
17/10/14 16:39:48.74 dtRv0inc.net
∫(0→π) (2/πi)(cosθ + isinθ)=4/π
となりますが、この答えは、
πを求める連分数計算における
1+1/(3+(1+3)/(5+(1+3+5)/(7+(1+3+5+7)/9+...=4/π
と等しいです
等しくなることの意味は何なのでしょうか?
930:132人目の素数さん
17/10/14 16:42:01.27 Zd83HJfE.net
>>897
レベルの低い人には聞いてません
931:132人目の素数さん
17/10/14 16:43:42.83 o183pcNN.net
>>899
都合が悪くなると主張を翻して俺をダシに使ったのは君だぞ
早く当初の主張通りに数行で証明してやれ
932:132人目の素数さん
17/10/14 16:44:15.04 Zd83HJfE.net
>>900
あなたがすればいいんじゃないですか?
できるものなら(笑)
933:132人目の素数さん
17/10/14 16:46:11.42 o183pcNN.net
>>901
「わかってるなら数行で終わること」と誤解していたのは君だ
俺はそれを否定し続けてきた
もう少し論理的に話そうよ
934:132人目の素数さん
17/10/14 16:47:36.40 B872vbOC.net
法華経と六法全書はどっちの方が凄いですか?
935:132人目の素数さん
17/10/14 16:47:43.61 Zd83HJfE.net
>>902
>>891は>>886を用いてもわからないらしいですよ?
わかるそぶりを見せてたはずですが、もしかしてあなたもわからなかったんですか?
ま、そうでしょうね(笑)
936:132人目の素数さん
17/10/14 16:48:49.25 o183pcNN.net
>>904
>>889
937:132人目の素数さん
17/10/14 16:49:43.47 Zd83HJfE.net
>>905
自明でも少しは説明できるはずですよね?
で、その説明は数行以内で終わります
わからないんですか?
938:132人目の素数さん
17/10/14 16:51:10.31 o183pcNN.net
>>906
>>900
939:132人目の素数さん
17/10/14 16:51:50.68 Zd83HJfE.net
>>907
ループしましたね(笑)
ま、わからないんでしょうね
私はわかりますけど
940:132人目の素数さん
17/10/14 16:52:48.50 JUUr/Kyi.net
そろそろ次スレ必要かなと思うw
941:132人目の素数さん
17/10/14 17:03:29.10 B872vbOC.net
空海とマキシム・コンツェビッチはどっちの方が天才ですか?
942:132人目の素数さん
17/10/14 17:08:02.85 9pQwxPIT.net
公理系がどうとか、難しいことを知っている方に何度か
2つの基点付き空間A、Bに対して、ホモトピー同値写像
S(A×B)
943:→S(A∧B)∨S(A)∨S(B) が存在することを示せ という問題を教えてもらおうとしているのですが、解答が頂けません 何故でしょうか?
944:132人目の素数さん
17/10/14 17:10:21.65 dtRv0inc.net
>>898
早急に答えが欲しいです
おねがいします
945:132人目の素数さん
17/10/14 17:14:34.54 2R5WAXw4.net
日本人は全員ゴミ
946:132人目の素数さん
17/10/14 17:20:50.07 NeZ/jqZV.net
>>901
数行で書けるって言っていたID:4clY7sjYと同じ人なのかな?
947:132人目の素数さん
17/10/14 17:21:52.23 Zd83HJfE.net
>>914
そうですね
948:132人目の素数さん
17/10/14 17:27:22.56 CDOAZ8iY.net
数学基礎論は完成しているのでしょうか?
完成していないとするといつ完成するのでしょうか?
949:132人目の素数さん
17/10/14 17:28:10.34 CDOAZ8iY.net
役にも立たない未完成品を勉強したいと思う人は少ないのではないでしょうか?
950:132人目の素数さん
17/10/14 17:29:40.31 9pQwxPIT.net
>>915
>>911に答えていただけませんか?
951:132人目の素数さん
17/10/14 17:30:38.89 NeZ/jqZV.net
>>915
数行で書けるのなら書いてよ
952:132人目の素数さん
17/10/14 17:34:01.36 Zd83HJfE.net
>>919
わからないんですね(笑)
953:132人目の素数さん
17/10/14 17:35:30.40 9pQwxPIT.net
>>920
>>911に答えていただけませんか?
無視しないでください
954:132人目の素数さん
17/10/14 17:36:05.06 NeZ/jqZV.net
>>917
完成って?
たしかに勉強したい人は少ないかも知れないけど未完成だから少ないというのはどうかしらね
955:132人目の素数さん
17/10/14 17:36:20.47 NeZ/jqZV.net
>>920
分かりません
956:132人目の素数さん
17/10/14 17:37:25.61 CDOAZ8iY.net
浅野孝夫著『アルゴリズムの基礎とデータ構造』を読んでいます。
「上の挿入ソートの例のように、基本演算回数(比較回数)は入力サイズ n にのみ
依存するとは言えない。そこで、入力サイズ n の入力のうちでアルゴリズムが最も
多くの基本演算を必要とする入力を考えて、それに対する基本演算回数を、本書ではん、
サイズ n の入力に対するアルゴリズムの計算量(time complexity of an algorithm)と
呼ぶ。すなわち、最悪の場合を想定してアルゴリズムの計算量を定めていることになる。
このようにして定められたアルゴリズムの計算量 T はもちろん n にのみ依存する関数で
あるので T(n) と書ける。上の挿入ソートの例では T(n) = n*(n-1)/2 である。」
と書いてあります。
その後、マージソートのところには、
「マージソートの計算量は T(n) = O(n*log(n)) である」
と書いてあります。
T(n) は最悪の場合の計算量ですから、
T(n) = Θ(n*log(n)) が正しいのではないでしょうか?
ちなみに、浅野さんは、この本の最初のほうで O, Ω, Θ を定義しています。
もちろん、 f(n) ∈ Θ(n*log(n)) ⇒ f(n) ∈ O(n*log(n)) ですが。
浅野さんは、挿入ソートの計算量を
O(n^2)
と書いています。
これも
Θ(n^2)
と書くべきですよね。
「上の挿入ソートの例では T(n) = n*(n-1)/2」
ですから。
957:132人目の素数さん
17/10/14 17:40:26.70 Zd83HJfE.net
>>923
そうですか
残念ですね(笑)
958:132人目の素数さん
17/10/14 17:42:07.72 NeZ/jqZV.net
>>925
あなたは不誠実な人だと思います
959:132人目の素数さん
17/10/14 17:42:15.87 9pQwxPIT.net
>>925
>>911に何故答えてくれないのですか?
960:132人目の素数さん
17/10/14 17:47:06.69 Zd83HJfE.net
τ|-φではないとします
{τ,¬φ}は無矛盾となります
もし矛盾しているならば、τ,¬φ|-すなわちτ|-φが証明可能となるので仮定に反します
>>886より{τ,¬φ}はモデルを持ちます
このモデルにおいては、τと¬φが真となりますが、これは仮定に反します
961:132人目の素数さん
17/10/14 17:49:18.66 iFT4waZT.net
揃いも揃ってID真っ赤っかで草
962:132人目の素数さん
17/10/14 17:49:33.69 9pQwxPIT.net
>>928
やはり賢いのですね
>>911をお願いします!
963:132人目の素数さん
17/10/14 17:51:50.52 CDOAZ8iY.net
上野健爾さんが、
a_n → α (n → ∞)
であるとき、
(a_1 + a_2 + … + a_n) / n → α (n → ∞)
が成り立つことは直観的な収束の定義からは導くことはできないと書いています。
でも、成り立つことは、直観的に明らかですよね。
964:132人目の素数さん
17/10/14 17:53:59.76 CDOAZ8iY.net
イプシロンデルタ論法を知らない高校生が
この結果を導いたとしても誰も驚きませんし、褒めることさえしないですよね。
965:132人目の素数さん
17/10/14 18:02:13.28 69ErbfRL.net
n^2 - m(m+1)/2 = 2 を満たす正の整数(m,n)が存在しないことの証明を重ねて御願い致します
966:132人目の素数さん
17/10/14
967:18:04:50.73 ID:Ihl9MReE.net
968:132人目の素数さん
17/10/14 18:05:32.59 Ihl9MReE.net
ID:Zd83HJfE
も同一人物
969:132人目の素数さん
17/10/14 18:07:33.75 Zd83HJfE.net
>>928
答え書きましたよね?
970:132人目の素数さん
17/10/14 18:12:24.65 9pQwxPIT.net
>>936
もしかして>>911は分からないんですか?
971:132人目の素数さん
17/10/14 18:13:49.74 QshKtkmn.net
>>928
伺いたいのですが,「証明可能」の定義は何ですか?
972:132人目の素数さん
17/10/14 18:16:36.65 Zd83HJfE.net
>>938
あるシークエントAから別のシークエントBへの証明図が存在することです
973:132人目の素数さん
17/10/14 18:18:41.36 QshKtkmn.net
>>939
シークエントと証明図の定義は何ですか?
974:132人目の素数さん
17/10/14 18:23:06.55 Zd83HJfE.net
論理式a1,a2,...,anおよびb1,b2,...,bmがあるとき
a1,a2,...,an|-b1,b2,...,bmをシークエントといいます
A,Bをシークエントとするとき、推論規則を用いて
A
---
B
というようにAからBを導く操作を推論といい、↑の図を推論図といいます
AからBへの証明図とは一番上のシークエントがAで、一番下のシークエントがBであるような推論図のことです
975:132人目の素数さん
17/10/14 18:27:35.28 QshKtkmn.net
>>941
論理式,推論規則,推論の定義は何ですか?
976:132人目の素数さん
17/10/14 18:28:46.91 Ihl9MReE.net
ID:QshKtkmn
こいつはこいつで...
977:132人目の素数さん
17/10/14 18:29:07.48 Zd83HJfE.net
>>942
いくつかの記号の集まりをL-言語(C,F,P)として以下で定義します
C:定数記号
F:関数記号
P:命題記号
述語記号
変数記号
論理記号
C,F,Pはある言語特有のものですが、変数記号と論理記号はいかなる言語でも共通のものが使われます
関数記号と述語記号にはアリティと呼ばれる自然数が対応付けられています
L-言語の項を以下で定義します
•定数記号は項である
•変数記号は項である
•アリティnの関数記号Fに対して、t1~tnを項とすれば、F t1 t2 ... tnは項である
•以上で定められたものだけが項である
L-言語の論理式を以下で定義します
以下、t1~tnは項、A,Bを論理式とします
•命題記号は論理式である
•アリティnの述語記号Pに対して、P t1 t2 ... tnは論理式である
•上で定めたP t1 t2 ... tnが変数記号xを含む時、∀x P t1 t2 ... tn、∃x P t1 t2 ... tnは論理式である
•¬Aは論理式である
•A∧Bは論理式である
•A∨Bは論理式である
•A→Bは論理式である
•以上で定められたものだけが論理式である
978:132人目の素数さん
17/10/14 18:30:17.80 Zd83HJfE.net
あるシークエントから別のシークエントへと書き換える操作を推論といい、推論を行う際の規則群を推論規則といいます
979:132人目の素数さん
17/10/14 18:34:49.95 Ihl9MReE.net
URLリンク(www.nue.riec.tohoku.ac.jp)
URLリンク(www.sakabe.i.is.nagoya-u.ac.jp)
980:132人目の素数さん
17/10/14 18:35:18.57 NeZ/jqZV.net
>>929
変な人を相手にしちゃったって感じでスマン
981:132人目の素数さん
17/10/14 18:36:09.06 QshKtkmn.net
>>944-945
集まり,言語,記号,定数~論理記号の定義は何ですか?
982:132人目の素数さん
17/10/14 18:38:11.83 NeZ/jqZV.net
>>934
たぶんだけど
数学を考えることが不自由な人じゃないかなって気がする
ペダンティックな雰囲気を好むだけで
実質的にナニカしようとはしない人じゃないかなあ
983:132人目の素数さん
17/10/14 18:39:08.10 Zd83HJfE.net
>>948
集まり、言語、はメタのレベルでの素朴な意味だとします
記号はメタの意味での自然数のことです
定数~論理記号は、記号に特定の意味を付加したもので、その意味は上に書いてあります
でも、論理記号がぬけていましたね
論理記号とは∀∃¬∧∨→のことです
>>949
私は答えを書きましたよ?
なんとか言ったらどうなんですか?
984:132人目の素数さん
17/10/14 18:39:53.94 Mp3l531I.net
>>949
劣等感ウンコ婆という荒らしをしらないのか?
985:132人目の素数さん
17/10/14 18:40:42.71 NeZ/jqZV.net
>>943
うむ
986:132人目の素数さん
17/10/14 18:41:24.69 QshKtkmn.net
>>950
それでは,「集まり」においてラッセルのパラドックスが回避できませんが,それでよいのですか?
また,「メタ」とが何でしょうか?
∀,∃,¬,∧,∨,→の定義は何ですか?
987:132人目の素数さん
17/10/14 18:41:32.52 NeZ/jqZV.net
>>950
まだ書いてないのでは?
数行でしょうに
988:132人目の素数さん
17/10/14 18:43:33.43 Zd83HJfE.net
>>954
928 名前:132人目の素数さん [sage] :2017/10/14(土) 17:47:06.69 ID:Zd83HJfE
τ|-φではないとします
{τ,¬φ}は無矛盾となります
もし矛盾しているならば、τ,¬φ|-すなわちτ|-φが証明可能となるので仮定に反します
>>886より{τ,¬φ}はモデルを持ちます
このモデルにおいては、τと¬φが真となりますが、これは仮定に反します
989:132人目の素数さん
17/10/14 18:44:51.16 Zd83HJfE.net
>>953
物理板でいいましたよね?
記号の集まりにラッセルのパラドックスは発生し得ません
メタとは、われわれの直観的な理解をそのまま議論に取り入れることです
記号の定義をみてください
990:132人目の素数さん
17/10/14 18:45:55.44 NeZ/jqZV.net
>>955
そこには説明するべき事柄が相当あるでしょ?
それにモデルが存在するというのはなぜ?
>>888
は大道具過ぎるし
991:132人目の素数さん
17/10/14 18:46:39.84 Zd83HJfE.net
>>957
>>886を認めることを前提としてます
あなたはそこにレスつけて突っ込んだんですよ
忘れたんですか?
992:132人目の素数さん
17/10/14 18:46:46.57 Mp3l531I.net
埋めるの手伝うね
993:132人目の素数さん
17/10/14 18:47:33.94 Mp3l531I.net
埋め
994:132人目の素数さん
17/10/14 18:48:19.45 Mp3l531I.net
埋め
995:132人目の素数さん
17/10/14 18:48:54.39 Mp3l531I.net
埋め
996:132人目の素数さん
17/10/14 18:49:37.20 Mp3l531I.net
埋め
997:132人目の素数さん
17/10/14 18:49:47.54 QshKtkmn.net
>>957
いえ,結局あなたは解答せずにいなくなりましたよね?
「記号は自然数」とありますが,そこに∀,∃,¬,∧,∨,→の定義があるのですか?
分からないので教えてください。
また,無矛盾(矛盾),モデルの定義もわかりません。
背理法による証明が正しいことの証明も教えてほしいです。
998:132人目の素数さん
17/10/14 18:50:48.77 Mp3l531I.net
埋め
999:132人目の素数さん
17/10/14 18:50:50.28 NeZ/jqZV.net
>>958
確かにそうか
でも説明するべき事柄はまだ相当あるよ
1000:132人目の素数さん
17/10/14 18:51:26.24 Mp3l531I.net
埋め
1001:132人目の素数さん
17/10/14 18:51:40.54 Zd83HJfE.net
>>964
なんらかのメタの意味での自然数を表すと考えれば良いですね
ある公理系τが矛盾するとは、τ|-が証明可能であることを言います
メタレベルでの証明の正当性を保証することはできません
1002:132人目の素数さん
17/10/14 18:52:11.72 Zd83HJfE.net
>>966
ないですよねw
1003:132人目の素数さん
17/10/14 18:53:53.36 NeZ/jqZV.net
>>949
これは撤回
数学を考えることはできるのかも知れないが
答えを考える新しく生み出すという数学の営みはしない人かもね
1004:132人目の素数さん
17/10/14 18:54:48.20 QshKtkmn.net
>>968
ん?すいません,よくわかりません。
素朴な「集まり」がどうやってラッセルのパラドックスを回避するのか具体的に教えてください。
公理系,|,-の定義は何ですか?
「メタレベルで証明の正当性を保証することができないこと」の証明をお願いします。
1005:132人目の素数さん
17/10/14 18:55:28.04 B872vbOC.net
東京大学大学院数理科学研究科数理科学専攻博士課程修了という肩書きを手に入れたい。
1006:132人目の素数さん
17/10/14 18:58:22.36 NeZ/jqZV.net
>>928
>τ|-φではないとします
これはシーケント計算による証明図が存在することであるとかの説明が必要だし
>{τ,¬φ}は無矛盾となります
無矛盾の定義とか
>もし矛盾しているならば、τ,¬φ|-すなわちτ|-φが証明可能となる
これを示して
全部で数行
1007:132人目の素数さん
17/10/14 18:59:04.09 PXMDLbLi.net
劣等感ウンコ婆
1008:132人目の素数さん
17/10/14 18:59:15.87 cr7AB90f.net
すみませんが、荒らしの人は遠慮して頂けないでしょうか?
ここは小学生・中学年・高校生・大学生・私の様なレベルの低い者が質問する場所です。
>>841はいかがでしょうか?
一週間考えても、分かりませんでした。
馬鹿な私でも分かるように、宜しくお願いします。
1009:132人目の素数さん
17/10/14 18:59:43.26 PXMDLbLi.net
劣等感ウンコ婆
1010:132人目の素数さん
17/10/14 19:00:00.84 qyKoN/eR.net
>>933
(mod.9)。
1011:132人目の素数さん
17/10/14 19:00:26.27 Zd83HJfE.net
>>971
できません
集まり、は上で述べた定義内において用います
記号の集まりや論理式の集まりがラッセルのパラドックスを起こすことはあり得ません
公理系とは論理式の集まりのことです
|や---は証明論におけるメタレベルにおいての記号です
メタレベルのわれわれの思考の道筋を論理式に書き起こ�
1012:オたとしても、その書き起こすこと自体が正しいのかどうか、などということはメタレベルでの話になってしまうので、現実問題を形式論理で解決することはできないのです その際にはメタレベルでの考察が必要になります
1013:132人目の素数さん
17/10/14 19:00:32.58 PXMDLbLi.net
劣等感ウンコ婆
1014:132人目の素数さん
17/10/14 19:00:39.80 NeZ/jqZV.net
誰かが言ったっていう「教科書を読め」ってのは
あなたが前提としていることを説明するのに結構かかるってことを意図してるんじゃないかな
私もかなり掛かると思ってる
1015:132人目の素数さん
17/10/14 19:01:04.79 PXMDLbLi.net
劣等感ウンコ婆
1016:132人目の素数さん
17/10/14 19:01:39.44 Zd83HJfE.net
>>973
一から用語を説明しろってことですか??
なんにもわからないってことじゃないですか(笑)
1017:132人目の素数さん
17/10/14 19:01:58.84 PXMDLbLi.net
劣等感ウンコ婆
1018:132人目の素数さん
17/10/14 19:02:38.10 PXMDLbLi.net
劣等感ウンコ婆
1019:132人目の素数さん
17/10/14 19:03:12.34 PXMDLbLi.net
劣等感ウンコ婆
1020:132人目の素数さん
17/10/14 19:03:23.58 Zd83HJfE.net
>>980
あなたはこの掲示板で質問に答える際、いちいち最初から定義をつらつら並べるんですか?
上の方でガンマ関数云々言ってますけど、ガンマ関数の定義、関数の定義、実数の定義、集合の定義、とか説明してないのはなぜですか?
1021:132人目の素数さん
17/10/14 19:03:52.98 PXMDLbLi.net
劣等感ウンコ婆
1022:132人目の素数さん
17/10/14 19:04:05.85 NeZ/jqZV.net
>>986
教科書を読め
じゃないかな
説明を求められたらするけど?
1023:132人目の素数さん
17/10/14 19:04:45.64 QshKtkmn.net
>>978
記号や論理式の集まりが,ラッセルのパラドックスを起こさないことを示してください。
メタレベルで解決してよいことと,解決してはいけないことの基準は何でしょうか?
>>986
貴方のやっていることが高等すぎるので,皆さん説明を求めているのです。
1024:132人目の素数さん
17/10/14 19:04:46.76 PXMDLbLi.net
劣等感ウンコ婆
1025:132人目の素数さん
17/10/14 19:05:04.74 Zd83HJfE.net
>>988
あなたはそんなこと言ってないですよね
なぜですか?
説明不十分ですよね
1026:132人目の素数さん
17/10/14 19:05:31.65 PXMDLbLi.net
劣等感ウンコ婆
1027:132人目の素数さん
17/10/14 19:07:12.94 Zd83HJfE.net
>>989
ラッセルのパラドックスは、自分自身を含む集まり、を考えますね
記号や論理式の集まりを考える際には、そんなことは考えませんから、起こらないのです
われわれが行う思考は全てメタレベルでの話です
1028:132人目の素数さん
17/10/14 19:07:52.28 NeZ/jqZV.net
何かを前提に説明することは多いよね
でもその説明を求められたらある程度はするでしょ
そして
長くなるんだったら「教科書を読め」になる
数行でできると書いたのを提示しないってのは
不誠実な人格だと思われて仕方ないと思うよ
1029:132人目の素数さん
17/10/14 19:08:48.16 Zd83HJfE.net
>>994
だから数行で証明しましたよね?
何が不満なんですか?
1030:132人目の素数さん
17/10/14 19:09:09.12 NeZ/jqZV.net
君は
何かに答えるということがどういうことで「あるべきか」を
もう一度考え直してみてはどうかな
1031:132人目の素数さん
17/10/14 19:09:36.52 NeZ/jqZV.net
>>995
それにはまだ相当説明が必要だから
1032:132人目の素数さん
17/10/14 19:09:49.19 Zd83HJfE.net
>>996
あなたがバカだから証明わかりませーん、ってことですよね??
1033:132人目の素数さん
17/10/14 19:10:01.84 QshKtkmn.net
>>993
考えれば起きるということですか?
集合論におけるラッセルのパラドックスも,変なことを考えなければ起きませんが,解決を必要としました。
「集まり」におけるパラドックスも同様に解決されるべきですよね?
1034:132人目の素数さん
17/10/14 19:10:04.20 PXMDLbLi.net
劣等感ウンコ婆
1035:1001
Over 1000 Thread.net
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 31日 10時間 5分 41秒
1036:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています