17/09/01 14:18:11.97 hW0Xyo2N.net
解析学では「N次元数空間(ユークリッド空間) R^N の有界な閉集合はコンパクトである」ことがよく使われる. 測度論ではR^Nの有限加法族の上に定められた有限加法的測度から測度を構成する時と区間の外測度が
長さに等しいことを証明する時に必ず要る. 本書にも
付録に証明がある. 私が考えた, 位相論を使わない証明
を紹介しておきたい.
Kは有界, すなわちKの適当な点p∈K と充分大きな半径
r の開球体B(p, r) はKを含むとする. Kは閉集合だからK
の任意の点列の極限はKに属する.これらをふまえて, K
が仮にコンパクトではないとして, Kの開被覆で有限被
覆できないもの {O_λ}_(λ∈Λ) を任意にひとつ選ぶ.K ⊂ O_1 ならいいのだが, Kに属していてもO_1 には属し
ていない点p_1 が存在する.K ⊂ O_1 ∪ O_2 であれば
いいのに, Kには属するがO_1 ∪ O_2 には属さない, す
なわちO_1 にもO_2 にも属さない点p_2 が存在する.
{O_λ}_(λ∈Λ) から有限被覆 K ⊂ O_1 ∪ O_2 ∪ … ∪ O_
n は不可能なので, Kには属するが全てのO_n に属さな
い点p_n が存在する. 点列 {p_n}⊂K は有界なので収束
する部分列を含んでいる. それを {p_m} とすると, Kは
閉集合だから {p_m} の極限 p:=lim_(m→∞)p_m∈K .
Kは有界だから中心をp∈K として充分大きな半径Rの
開球体 B(p, R)⊃K である.新たに有限被覆が見つかっ
たから最初からKはコンパクトなのではないかと思わ
れるがそうではない. 「どんな開被覆もKを有限個の元
で覆えない」と仮定したが, 実は「…」ということに
依存している有限被覆が見つかったという結論に至っ
た. つまり「Kはコンパクトではない:R^Nのどんな
開集合 O_1 , O_2 , … , O_n を選び出しても K ⊂ O_1
∪ O_2 ∪ … ∪ O_n とはできない」と言いながら, 実は
「R^N の中に既にある」1個の開集合で被覆できた.
こんなことが結論されてしまったのは「Kはコンパク
トではない」と仮定したからである. だからKはコンパ
クトではないことはあり得ないのである. ゆえにKはコ
ンパクトであるといわざるを得ない. 背理法を認める
限りKはコンパクトである.