17/08/28 13:50:25.99 B/yoMaIV.net
>>219 つづき
3)物理学者が考察する空間の多くが非可換として捉えられるという意味での物理学との関係。
まず、ハイゼンベルクによって行列力学という形で発見された量子力学(第1章)は、古典力学の相空間上の関数全体の可換環を非可換なものに置き換えた。
その代数は単純な系の場合には行列全体の作る環だが、量子統計力学的な系の場合には非自明なC*環になる。
次にベリサールの固体物理学における仕事(第4章)によって、そのエネルギーと運動量の空間は、(その上で定義された関数全体のなす環が非可換なものによって置きかえられるという意味で)非可換なものとなった。
最後に(第5章)、ワインバーグ-サラムモデルによる素粒子物理学は時空間を支配する幾何学をあきらかにしたが、その幾何学は非常に微妙なものであって、われわれがそこに(4次元の多様体上の)非可換幾何学を考える余地を残している。
それは微分形式の概念や時空間の二重化を考えることによって、標準模型のヒグスボソンに対する概念的な根元を純ゲージボソンとして理解するということに関係する。
つづく