17/08/28 13:49:31.21 B/yoMaIV.net
>>218 つづき
はじめに
代数幾何学によって、幾何学的な空間と可換環論との関係はあきらかになった。この本の目的は実解析学の範疇で可換を越えたところでの幾何学的な空間と関数解析との同じような対応を示すことである。
この理論を支えるのは本質的な三本の柱である。
1)自然に現れて、古典的な解析学の手法を適用することはできないが、非常に自然に非可換代数を対応させることができる数多くの例。たとえば、ペンローズの宇宙の空間、葉層多様体の葉全体の空間、離散群の既約表現全体の空間など。
2)測度論、位相、微分演算、計量などの古典的な解析学の手法の、代数やヒルベルト空間を用いた再定式化。
その場合、自然な状況には非可換が対応していて、その中でとくに可換な場合が、この一般論の中では孤立していることもなければ、また閉じていることもないようにできるということ。
つづく