暇つぶし2chat MATH
- 暇つぶし2ch164:ノおける少しの変更だと実感した。その時、それをするのは難しくなかった。ある意味で、証明は非常に簡単だ。極限の明晰な概念を持って、そして解析の力によって、何回も極限に行ける。 それは、以前には見たことがない構造を作る。なにもやって来てはいないと思うが、驚くべきことに何かを達成してしまう。それは私とって驚きだった。 Raussen and Skau: 貴方は無限から群を見る(いわゆるグロモフ-ハウスドルフ距離において、群に関連付けられた距離空間の列の極限を見る巧みなな記述)アイデアを導入しました。これを見事な効果で使用して来ています。どうか何らかのコメントを。 グロモフ: 極限と無限から見ることを使って、多項式増大についての定理の証明の後、ウルトラフィルターを使って多項式増大のずっと良い提示を与える、Van den DriesとWilkieによる論文があった。 やがて、私はその論文を再度取り上げ、極限が存在しないが、それでも超極限を持つ状況という、ずっと広いクラスに適用されると実感した。それは、群を含む多くの数学オブジェクトに非常に良い見解を与える。だが、まだ凄まじい力強さはない。 群に関連して言えば、本Word Problems(1973)の中でPaul Schuppによる小簡約定理に私は影響された。本で彼は"人々は小簡約定理が何であるか分かっていない"と言った(これは非常に正直で有益な注意だったと私は思う)。 そして、私もそれを理解しなかったから、非常に安心した。私は小簡約定理が何であろうかを考え始め、これの双曲型性の概念を思いついた。これは非常に嬉しかったが、カルタン-アダマール定理の粗形式のような(私がそれに関して論文を書ける以前のこと)、私がかなり長い間処理出来ない技術的要点があった。 つづく
次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch