暇つぶし2chat MATH
- 暇つぶし2ch128:132人目の素数さん
17/08/27 15:54:10.38 zRWCekrT.net
【代数学の基本定理】を環論と微分方程式論を使って証明してみた
多項式関数は(常微分方程式の初期値問題において解
の一意存在定理として代表的な)コーシー-リプシッツ
の定理で言う点(t_0, x_0)の近くでリプシッツ連続であ
り局所解は任意に延長可能かつ多項式関数はC^∞級だ
から解もC^∞級であり多項式関数の次数がnであれば
当然C^n級でもある(実際はC^n級であれば充分)
常微分方程式p(d/dx)y=0の初期値問題の解yがC^n級
であれば(p(d/dx)に作用させられる関数がC^n級であれ
ば)一般の関数yに対してp(d/dx)yはC^0級関数つまり連
続関数となる(実際はC^∞級関数だが連続関数と言えれば充分)
ΩをRの有界な開区間としてn次C-係数多項式の成す
環C_n[x]とC^n(Ω)からC(Ω)への定数係数線型微分作
用素の成すバナッハ環LD(C^n(Ω), C(Ω))は準同型写像
p(x)→p(d/dx)により環として同型
C_n[x]≅LD(C^n(Ω), C(Ω))
である
(ここでC^n(Ω)はΩ上のC^n級関数の成す集合(線型位
相空間かつバナッハ環かつ多元環)でC(Ω)はΩ上の連
続関数の成す集合でありLD(C^n(Ω), C(Ω))の演算は
(p+q)(x):=p(x)+q(x)とすると
(p+q)(d/dx)=p(d/dx)+q(d/dx)
(線型写像の和)
(pq)(x):=p(x)q(x)とすると
(pq)(d/dx)=p(d/dx)q(d/dx)
(形式的に掛けたもの)
で定義している)
(続く)


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch