17/09/10 19:06:14.10 kwKQnjaH.net
>>933
a^2+b^2=c^2を満たす互いに素なピタゴラス数(a,b,c)は、
a,bのどちらかが偶数で他は奇数なので、bを偶数とすると
違いに素な2つの自然数m,n(ただし、どちらかは偶数で、m>n)を用いて
(a,b,c)=(m^2-n^2, 2mn, m^2+n^2)と表される。
直角三角形の外接円の半径は斜辺の長さの半分であり、それが整数となるためには
斜辺が偶数でなくてはならないので、求める直角三角形の3辺を
(2k(m^2-n^2), 4kmn, 2k(m^2+n^2))とおくことができる。(kは自然数)
このとき、内接円の半径は
r=2k(m^2-n^2)*4kmn/(2k(m^2-n^2)+4kmn+2k(m^2+n^2))=2kn(m-n)となり、
これが素数なので、k=n=m-n=1 ∴(m,n,k)=(2,1,1)
よって3辺は(6,8,10),R=5,r=2