現代数学の系譜 古典ガロア理論を読む36at MATH
現代数学の系譜 古典ガロア理論を読む36 - 暇つぶし2ch117:132人目の素数さん
17/07/13 19:31:53.36 2PebMGk5.net
カラオケバトルの流れ
・1人目歌唱後 採点
 1人目 トップ
・2人目歌唱後 採点
 トップ交代 確率1/2 
 (2人目トップ)
 そのまま  確率1/2 
 (1人目トップ)
・3人目歌唱後 採点
 トップ交代 確率1/3
 (3人目トップ)
 そのまま  確率2/3
 (1人目もしくは2人目がトップ)
・4人目歌唱後 採点
 トップ交代 確率1/4
 (4人目トップ)
 そのまま  確率3/4
 (1人目~3人目のいずれかがトップ)
・・・
・n人目歌唱後 採点
 トップ交代 確率1/n
 (n人目トップ)
 そのまま  確率(n-1)/n
 (1人目~n-1人目のいずれかがトップ)

118:現代数学の系譜 古典ガロア理論を読む
17/07/13 19:41:41.35 +QwaMazU.net
>>108-109
つまんねー話だな(^^

119:132人目の素数さん
17/07/13 20:27:17.03 2PebMGk5.net
>>110
面白い嘘には興味がないな

120:132人目の素数さん
17/07/13 20:49:21.96 /XGDw6N1.net
チラシの裏でやってろよファザコン野郎

121:132人目の素数さん
17/07/13 20:51:27.02 tbKTYNAt.net
 ほんとにバカばっかり

122:132人目の素数さん
17/07/13 20:57:14.16 /XGDw6N1.net
>>107
>>1が原始人で
原始人に謝れ

123:現代数学の系譜 古典ガロア理論を読む
17/07/13 21:10:06.23 +QwaMazU.net
>>110 補足
まあ、陸上の走り幅跳びとか、ハンマー投げとか
複数の試技を行う競技があるだろ
1回目の試技でトップだった人が
最終の優勝者とは限らない。そういうことだろうかと思ったが・・?
ところで、n人というが
n=2なら、最初の一人の試技の段階でトップと呼ぶのかね?
常識的には、一人しか成績が出てなければ、
トップとは呼ばないよね、日本語としては
一人しか成績が出てなくても、トップとは呼ぶなら
それは定義の問題だわな~。n=2でも、トップの入れ替わりありだとか云々とか
で、何が言いたかったんだ?
”「カラオケバトル」という素晴らしい番組を、いつも見ているんだ”ということを言いたいのかい?(^^

124:132人目の素数さん
17/07/13 21:33:35.76 qUoU+3Yf.net
そろそろスレ主にもわかる話題を提


125:供してやれよ 実力に見合う良い問題に触れさせることが成長の一歩だと思うぞ



126:現代数学の系譜 古典ガロア理論を読む
17/07/13 21:36:18.52 +QwaMazU.net
>>87 補足
<追加抜粋引用>
貴方が近いと思う過去の数学者はいますか?
近いと言わないが、特に崇拝する人がいる。ガロアだ。彼の書く物には非常に際立った特徴がある。その定式化は驚くほど簡明だ。例えば、"n個の異なる根を持つ方程式を考える。その時、最初の命題、その根を置換する時、n!個の異なる根を持つ有理函数が存在する。そして、二番目の命題、根はこの函数の有理函数である"。
その定式化の当てにならない簡明さにもかかわらず、これらの命題を使ってガロアは遥か遠くに進むことに成功する。有理函数のn!個の異なる値である根の方程式を彼は書下ろし、それを既約因子に分離して、それらの一つを選び、元の方程式の根がこの因子の根にどのように依存するかを書き、群に気がつく。
そして、その方法に沿って為された選択全体に、この群が依存しないことを彼は示す...これを達成するために、ユニークな概念"この群により不変である時かつその時のみ、根の函数は有理的に決定される"によって抽象的に群を特徴づける。
とても簡明だ。私が素晴らしいと感じることは、抽象化のパワーを使う、この種の飛躍、事柄を概念化する際の非常に大きいステップだ。ガロアの直観力は対称性の考えにではなく、不確定の概念を基礎としている。
単純に皆は彼がある函数の不変群を研究したと言うかも知れない。しかし、ガロアの最初のステップはまったく逆だ。すなわち、全く不変でない函数を選ぶことで、彼は可能な限り対称性を壊す。
彼以前の数学者達―カルダノ、ラグランジュ―は根の対称函数を用いて研究した。アーベルの意思においてガロアは逆をする。彼は出来るだけ少ない対称性を持つ函数を選んでいる。
つづく

127:現代数学の系譜 古典ガロア理論を読む
17/07/13 21:38:06.67 +QwaMazU.net
>>117 つづき
私の印象に残ることは、これらのアイデアの豊穣さだ。これらを掴むために私達が開発して来たいろいろな形式論は、それらのアイデアの力をまだ使い尽くしていない。ガロアのアイデアは明瞭さ、明るさ、今日まで手付かずのままで現在までの数学者達の共鳴を得る、刺激的で潜在的な考え方を持つ。
それらは、淡中圏またはリーマン-ヒルベルト対応のような偉大な概念を生成して来ている...これらのアイデアは大変美しいが、しばしば余りにも杓子定規に記述されているから束縛のように見え、ガロアがそれらを解き放った時点から自由になっていない印象を受ける。
ガロアのアイデアの他の化身は微分ガロア理論とモチーフ理論だ。モチーフ理論はガロア理論の高次元の類似と見なすことが出来る。
しかし、ガロアが考えていたことを彼が以下のように書いた時に、私達は現実に理解した。
長期間の私の主な熟考は、不確定の理論の超越的な分析への適用に注がれた。これは、どの交換がなされ得るのか、関係が発生しなくならないように与えられた量をどれくらい置換えるのか、その量または超越的作用の間の先験的関係においてだった。
探す能力のある多くの式が不可能だとすぐに分かった。しかし、私は時間が無く、この広大な分野でアイデアはまだ十分に発展していない。
インスピレーションのソースとして初期の私を助けた他の数学者達の例がある。
つづく

128:現代数学の系譜 古典ガロア理論を読む
17/07/13 21:39:54.49 +QwaMazU.net
>>118 つづき
私のしていることに彼等が近いからではなく、彼等がしていることを私は崇拝する。最初に、計算方法が素晴らしいと思ったから、私はヤコビに魅了された。そして、フォン・ノイマン―彼の発見したものの深さと彼がそれを語る流儀...そして、もちろん富田。
私は富田の得体の知れない個性に魅了された。富田は、社会が非常に独創的な人に対して仕掛けがちな罠を避けることに成功して来ている人だ。
彼は2歳の時に耳が不自由になった。彼が研究を始めた時、彼の論文指導者は"この本を読んだら、返しにおいでなさい"と言って、分厚い本を彼に与えた。
彼は2年後にたまたま論文指導者に出会い、論文指導者は"本はどうなっているの?"と彼に尋ねた。それに対して"いやぁ、一週間後に失くしました"と富田は答えた...
しかし、もっとも新鮮でもっとも鮮明なソースはガロアだと思う。
非常に奇妙だが、私はガロアと簡明さと豊穣さのパワフルな混合を切り離したことがない。
つづく

129:現代数学の系譜 古典ガロア理論を読む
17/07/13 21:40:53.23 +QwaMazU.net
>>119 つづき
作用素環と偶然の出来事: どのように始まったのですか?
1970年に私はショケーに送られてレ・ズッシュ夏期講習会[物理学]に行った。その時、超準解析を研究していたが、しばらくして理論の落とし穴を見つけた...問題は超準数を持つとすぐに非可測集合を得ることだ。
ショケーのサークルでは、ポーランド学派をよく研究していたので、名前を挙げられるすべての集合が可測だと知っていた。だから、物理学をするために超準解析を使おうとすることは失敗だと完全に宣告されたように思われた。だが、それが1970年のレ・ズッシュへのパスポートとして私に都合がよかった。
そして、そこからバテル研究所のフェローとして雇われ、シアトルに招待された。私は殆ど米国を訪れるために了承した。つまり、プログラムを見もしなかった。そして、発生した偶然の出来事は、私の兄弟を訪ねるためにプリストンに止まり、プリストンの本屋でランダムに一冊の本を買ったことだ。
竹崎による富田理論についての、私を魅了した本に出会うまで私は多くの本の中でためらった。長時間の列車旅の予定を分かっていたので、その本を買った。米国中西部の平原を通り抜ける旅の間、私は本を凝視した。
読んだとは言えず、実に難し過ぎた。そして、もっとも異常な偶然の出来事は、私がシアトルに着いた時、初日に行きカンファレンスのプログラムを見て、富田理論についての竹崎の講義があった。
その日から、私は"まさにそれだ。他のどんな講義にも行かない。ただ竹崎のものだけ"と自分に言い聞かせた。
つづく

130:現代数学の系譜 古典ガロア理論を読む
17/07/13 21:42:09.19 +QwaMazU.net
>>120 つづき
あまり科学的態度ではない...
そう。さらに、この時に私は日本のすべてのことに魅了された。私が全然知らない、全く違う何かに感受性のレベルにおいてもっと多かった...得られる教訓があるとするなら、これは私が当時夢中になっていたアイデアの範囲から私に手を引かせた。
そしてその時にちょうど、もう一つ別の偶然の出来事があって、私が帰国した時、幸運のもう一つの打撃があった。私は富田理論を少し、ほんの少し分かった。研究出来なかったが、帰国した時、作用素環を扱うパリのセミナーに行こうと自分に言い聞かせた。
だからディクシミエのセミナーに初めて行ったが、セミナーは組織だった会合だった。その年の主要テーマは、無限テンソル積に関する荒木-Woodsの研究だった。


131:ディクシミエは出席者の中でちょっとランダムに論文を配っていた。一つだけ残された。 私は手を挙げた。帰りのRER[郊外列車]に乗りながら私は退屈した。渡された論文を少し見て、私は本当にびっくり仰天させられた。論文には、分からなければ私は完全なアホも同然だったに違いなく、富田理論における式と全く合致する式があった。これらの式は、あるベクトルが富田によって定義された作用素に対する固有ベクトルだと語っていた。 一時間後に私は家に着き、"ここに荒木-Woodsの不変式と富田理論がある"とディクシミエに手紙を書いた。富田作用素のスペクトルの交わりから前者の不変式が得られるので、私はその式を彼に送った。私はショケーに育てられたから、これ全体を半ページに書いた。 ディクシミエはすぐに"貴殿の書いていることは全く理解不能だから、詳細を求む"と返信した。それで私は3ページの詳細な返信を書いたが、それは難しくはなくて、私がSと呼んだ不変式を定義出来ると説明した。 ディクシミエは次のセミナー後のために私を予約した。私は彼に会いに行き、その時に彼が言ったことは"Foncez"だったが、それはフランス語で"頑張ってやってみろ!"の強い形だ。それが出発の時点だった。本当に信じられない幸運だった。実際に難しくはなかった。正確にはきちんと書かれていなかったけれども、式の中にあった。 私がパリに残り、サークルの外側へ移動しなかったら、狭い視野で研究を続け、全く異なる分野を開発しなかったであろうことは確かだ。 (引用終り)



132:132人目の素数さん
17/07/13 21:49:05.82 2PebMGk5.net
>>114
>原始人に謝れ
     _____
    /_      |
    /. \ ̄ ̄ ̄ ̄|
  /  /  ― ― |
  |  /    -  - |
  ||| (6      > |
 | | |     ┏━┓|    / ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
| | | |     ┃─┃|  < 正直、スマンカッタ。
|| | | |  \ ┃  ┃/    \________
| || | |    ̄  ̄|

133:132人目の素数さん
17/07/13 22:02:38.54 bm6bbrbI.net
>>122
なぜロベルトバッジオが謝る?

134:132人目の素数さん
17/07/13 22:04:48.73 2PebMGk5.net
>>115
キミ実は大学行ったことない高卒だろ

135:現代数学の系譜 古典ガロア理論を読む
17/07/13 22:30:43.70 +QwaMazU.net
>>117 補足
>単純に皆は彼がある函数の不変群を研究したと言うかも知れない。しかし、ガロアの最初のステップはまったく逆だ。すなわち、全く不変でない函数を選ぶことで、彼は可能な限り対称性を壊す。
この話は、過去スレの3 でもあったね。当時、231から次のスレまで議論は続いた気がする・・(^^
スレリンク(math板:231番)
231 名前:132人目の素数さん[] 投稿日:2012/04/21(土) 15:15:43.09
アランコンヌはガロアの業績の紹介の中で
ガロアを対称性の破壊者と呼んでいる。
Brisure de symetrie
Le premier pas de la demarche de Galois consiste a briser
de maniere maximale la symetrie entre les racines
d'une equation en choisissant une fonction
auxiliaire largement arbitraire de n variables.
236 自分:現代数学の系譜11 ガロア理論を読む[] 投稿日:2012/04/21(土) 17:55:20.77
>>231-233
乙です
いや、面白ね
で、231はPS版で、同じ内容のPDF版が下記にあるね
URLリンク(www.alainconnes.org)
Alain Connes -- Documents
? La Pensee d'Evariste Galois et le Formalisme moderne [PDF] 259 KB URLリンク(www.alainconnes.org) [PS] 1.6 MB
(引用終り)

136:現代数学の系譜 古典ガロア理論を読む
17/07/13 22:31:46.86 +QwaMazU.net
>>124
カラオケ大学か? 知らないね(^^

137:現代数学の系譜 古典ガロア理論を読む
17/07/13 22:43:01.45 +QwaMazU.net
>>117 補足
>私が素晴らしいと感じることは、抽象化のパワーを使う、この種の飛躍、事柄を概念化する際の非常に大きいステップだ。ガロアの直観力は対称性の考えにではなく、不確定の概念を基礎としている。
ここ"不確定の概念を基礎としている"について、梅村 浩先生の下記を連想したね(^^
URLリンク(www.amazon.co.jp)
ガロア/偉大なる曖昧さの理論 (双書・大数学者の数学) 単行本 ? 2011/11 梅村 浩 (著)
URLリンク(tetobourbaki.hatenablog.com)
記号の世界
20170210
【書評】梅村浩『ガロア 偉大なる曖昧さの理論』
今回は、ガロアについて書かれたこの本を紹介します。実は、微分ガロア理論まで紹介したすごい本なのです。

138:132人目の素数さん
17/07/13 23:49:38.26 /XGDw6N1.net
やはりバカを隠すにはコピペに限るな

139:現代数学の系譜 古典ガロア理論を読む
17/07/14 06:19:30.45 9Pw6pau2.net
>>125 追加
過去スレの3 スレリンク(math板:251番)
251 自分返信:現代数学の系譜11 ガロア理論を読む[] 投稿日:2012/04/21(土) 20:06:48.34
>>236
(再録)
URLリンク(www.alainconnes.org)
Alain Connes -- Documents
ここ、仏語が読めれば面白そうな文献が沢山あるね
・Symetries [PDF] 193 KB URLリンク(www.alainconnes.org) [PS] 6.6 MB
辺を読んでみたらどうだ? 仏語が得意なら
この中にGaloisがあるが、どう扱われているか分かるだろう

140:132人目の素数さん
17/07/14 06:21:19.06 WlcB2qq8.net
              ,,,,,,,,,,,,,,,,,,,,
             /": : : : : : : : \
           /-─-,,,_: : : : : : : : :\
          /     '''-,,,: : : : : : : :i
          /、      /: : : : : : : : i     ________
         r-、 ,,,,,,,,,,、 /: : : : : : : : : :i    /
         L_, ,   、 \: : : : : : : : :i   / コピペしたら
         /●) (●>   |: :__,=-、: / <   勝ちかなと思ってる
        l イ  '-     |:/ tbノノ    \
        l ,`-=-'\     `l ι';/      \  ガロア(42・男性)
        ヽトェ-ェェ-:)     -r'          ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
         ヾ=-'     / /
     ____ヽ::::...   / ::::|
  / ̄ ::::::::::::::l `─''''   :::|

141:132人目の素数さん
17/07/14 06:39:25.66 mNx03cem.net
>>130
ガロアさん42までご健在でいらっしゃったんですね

142:現代数学の系譜 古典ガロア理論を読む
17/07/14 06:51:16.23 9Pw6pau2.net
>>128
バカ同士で会話しても面白くないだろ?(^^

143:現代数学の系譜 古典ガロア理論を読む
17/07/14 07:18:48.73 9Pw6pau2.net
>>87 つづき
>アラン・コンヌ博士のインタビュー記事は他にも"IPMにおけるアラン・コンヌへのインタビュー"があります。そちらの方が博士の本音が出ているように思います。
これだね
URLリンク(srad.jp)
IPMにおけるアラン・コンヌへのインタビュー taro-nishino 20150907
(抜粋)
イランでのインタビューだったから、のびのびと発言出来たのかも知れません。
例えば、猫も杓子も弦理論を叫ぶ愚かな風潮への批判、グロタンディーク氏とその学派の振舞いが傲慢に見えたから距離を置いていたこと、ブルバキ内部の人達の人としての礼儀の無さ、ブルバキの積分論のひどさ(これはコンヌ博士のみならず、本当に読んだことのある人なら普通そう思うでしょう)等々、
ヨーロッパの数学者達の神経を逆撫ですることを語っています。
このインタビュー記事は当時海外において少なくとも私の周辺で話題になりました。周辺以外でも、例えばPeter Woit博士の有名なブログNot Even Wrongにおいて"Interview With Alain Connes" URLリンク(www.math.columbia.edu) と題して言及されました。
G. B. Khosrovshahi(以下、GBK)
私達の最初の質問は、21世紀において何が数学の主なトレンドになると貴方は考えてい�


144:驍ゥです。 アラン・コンヌ(以下、C) ええと幸いにも数学の発展は人が予測出来るものではないし、予測しようとするのは馬鹿げているだろう。私達が数学をすることを好む一つの理由は、未来の研究が解明するだろうものが目の前にあることを知らないからだ。 しかし、私達がより良く理解しなければならない、不思議な構造の実例を説明することは可能だ。数学における"21世紀の課題"についてのトークをしないかと私は最近頼まれたが、長大なリストを与えることよりも、紹介するのは簡単だが、その幾何学がまだ不可思議な、たった2つの実例に私は焦点を絞った。 一つ目は4次元時空、二つ目は素数の空間だ。私は4つのトークで、それらの幾何学の非常に小さな断片を説明したが、明らかに私達はもっとよく知りたい! GBK 貴方の数学的研究でコンピュータを使うだろうと思いますか? C ええと、あのう私は最近コンピュータを大量に使って来ている。 (この後、面白い話が続くが、省略)



145:現代数学の系譜 古典ガロア理論を読む
17/07/14 07:24:46.14 9Pw6pau2.net
>>87 つづき
URLリンク(srad.jp)
taro-nishinoの日記: アラン・コンヌへのインタビュー 第二部 2015年02月23日
(抜粋)
アラン・コンヌ博士と言えば、著書Noncommutative Geometry[非可換幾何学]、Noncommutative Geometry, Quantum Fields and Motives[非可換幾何学、量子場理論、モチーフ理論](Matilde Marcolli博士との共著)が有名です。
これから読みたいと思っている人もいるでしょう。私もある人から前提知識は何なのか聞かれたことがあります。はっきり言えば、こんな質問する人には無理だと言ってもいいかと思います。
今回紹介するインタビューの中でもコンヌ博士が言っていますが、数学のどの分野を専攻するにしても最低限の共通バックグラウンド(微分幾何学、代数幾何学、代数構造、実解析、複素解析)がほぼ仮定されています。
つまり、大学4年間と大学院修士課程で学習するであろう科目すべてを含んでいます。さらに、両著とも物理学の或る程度の素養も仮定されています。それは非可換空間で標準模型を扱っているのだから当たり前です。
例えばラグラジアンが何たるかを全く知らない人が両著のいくばくかの物理の解説を読んでも理解出来るとは私には思えません。
それからもう一つ重要なことがあります。インタビューの第一部でも言及されていましたが、コンヌ博士は計算大好き人間です。従って、極端なことを言えば、くりこみの摂動計算を手でやったことがない人は皮相的な理解で終わる可能性があります。
21世紀の数学は、ユーリ・マニン博士も言っていますが、"量子化"と言うテーマの時代と言っていいのではないでしょうか。つまり、20世紀のように抽象論を振りかざすだけで何とかやっていた時代は終わったということでしょう。
いずれにせよ、インタビューの第二部の私訳を以下に載せておきます。なお、このインタビュー記事は EMS Newsletter March 2008 (PDF)
URLリンク(www.ems-ph.org)
の中に収録されているので、原文に関心がある人は該当ページを探してください。
(引用終り)

146:現代数学の系譜 古典ガロア理論を読む
17/07/14 08:11:43.62 9Pw6pau2.net
話は、戻るが
過去スレ 33 スレリンク(math板:133番) 辺りで
『プリンストン数学大全』の話が出たが
あれのP1120 VIII.6 「若き数学者への助言」というのがあってね(^^
数学科の人は、是非読んでおくべきだろう
マイケル・アチャ、アラン・コンヌ、ピーター・サルナック 他+2名が書いている
マイケル・アチャの話が、特に面白かったね(^^
(抜粋)
「私と同世代ではおそらく抜きん出た数学者であるジャン=ピエール・セールは、自分もある段階で数学を断念することを考えたと私に語った。
 二流の者だけが自分の能力をこの上なく過信する。能力があればあるほど自分の基準を高く設定するものだ。つまりは現状より上を見ることができる。」
「物理学に転向した数学者(たとえば、フリーマン・ダイソン)もいれば、別の道に移った数学者(例えば、ハリッシュ=チャンドラやラウル・ボット)もいる。数学を閉鎖的な世界と考えてはいけない。数学と他の学問分野との相互作用は、個人と社会双方にとって健全なものである。」
「数学研究とは証明を提示していくころだと考えるのは間違っている。実際、数学研究の真に創造的な部分はすべて証明段階より重要だと言える。
 ”段階”というメタファーを使うならば、あなたはアイデアを持つことから始め、筋書きを広げ、問答を書き、芝居がかった説明を用意しなければならない。実際にできあがったものが、アイデアを実行に移した”証明”と考えられる」
「数学ではアイデアと概念が最初にあって、次に疑問や問題が来る。この段階で解答を求める研究が始められ、解法や戦略を探すのだ。」
(引用終り)

147:現代数学の系譜 古典ガロア理論を読む
17/07/14 08:17:27.22 9Pw6pau2.net
>>105
¥さん、どうも。スレ主です。
¥さんが、青春期から大学、院、研究者の各段階で、大変つらい思いと体験をされたということは、理解というか想像できます・・

148:¥氏
17/07/14 08:51:48.86 ZICaIrqM.net
いや辛かったのは茨木芳雄塾という強制収容所の時代と、そしてまあ筑波時代ですかね。
云わば「アレもダメ、コレもダメ、ソレもダメ」みたいな、所謂「飼い犬状態」でした。
でも大学院時代は『愛情を以て論理で砕く荒木先生』からとても大切にして頂きました
ので、併せて佐藤師であるとか柏原さんとか、そういう超人数学者と同じ釜の飯を喰う
機会を与えられ、とても感謝しています。荒木先生は正に『私の救いの親』ですね。
素朴な考え方を大切にして、そして『自分を絶対に騙さない恭司さん』からも多くを学
びました。恭司さんも正に「数学者の鑑」だと思いますね。こんな幸せな大学院時代な
んて、そうはないと思います。
そしてConnesとの出会いは猛烈に重要な大事件であり、最初に会ったカナダの国際会議
での折には、その帰りに立ち寄ったUCLA(当時は竹崎教授が居られた)でショックから
発熱し、その後はConnes教の信者として猛進する機会になりました。その翌年には英国
で修論の結果を発表した際に、有り難くもConnes師御本人に『ズタボロに砕いて貰った
という貴重な体験』をさせて戴きました。この時以来、彼は私の学問上の保護者となり、
現在の私があるのは正に『Connes師のお陰』以外の何物でもありません。Connesさんか
らはかなり頻繁にIHESでの貴重な時間を与えて戴き、あの『天国のような時間』こそが
数学の糧となりました。IHESでの研究環境は、正に心の拠り所そのものですわ。
彼は私に取っては友人であり兄であり、そして親の様な、そして最後が指導教官とでも
言うんでしょうか、私に取っては最も尊敬するべき師なのです。


149:132人目の素数さん
17/07/14 09:11:39.21 WlcB2qq8.net
>>132
>バカ同士で会話しても面白くないだろ?(^^
バカが数学板にいても面白くないだろ(^^

150:偉大なる哀れな素人
17/07/14 09:48:05.43 /RvkM8C5.net
話の流れとは何の関係もない投稿
僕は�


151:Vたに「すべてのパラドックスは詐欺である」 という論文を書いた。たった3ページの論文である(笑 僕の本の改訂版に載せるつもりなので、 興味があれば買って読むように(笑 「私は嘘つきである」 「この文は偽である」 「次の文は真である」「前の文は偽である」 床屋のパラドックス ラッセルのパラドックス これらのパラドックスを槍玉に挙げた。 とくにラッセルのパラドックスは重要なので 僕の論文を無視してはいけない(笑



152:偉大なる哀れな素人
17/07/14 09:53:14.60 /RvkM8C5.net
宣伝その2
「解析学の大錯誤」で批判したのは次の項目
デデキントの切断
ワイエルシュトラスの定理
有界な単調数列の収束
区間縮小法
コーシーの収束判定法
コーシー列による実数の構成
ε-δ論法
カントールの対角線論法
これも改訂版に載せるので必読(笑
解析学の基本公理を覆す革命的論文である(笑

153:132人目の素数さん
17/07/14 10:14:12.22 WlcB2qq8.net
¥氏は数学の話を全く書かないね
終ったのかな?

154:現代数学の系譜 古典ガロア理論を読む
17/07/14 10:26:45.25 8xDmC3Sj.net
>>139
偉大なる哀れな素人さん、どうもスレ主です。
ラッセルのパラドックスね
昔、高校時代にゲーデルの不完全性定理の通俗解説書を読んだ記憶がある。確か、その中にも出てきたと思う(^^
面白かったね。対角線論法が出てくるんだったね、確か・・(^^
まあ、お好きにこのスレを使ってください(^^

155:現代数学の系譜 古典ガロア理論を読む
17/07/14 10:32:37.37 8xDmC3Sj.net
>>138
>>バカ同士で会話しても面白くないだろ?(^^
>バカが数学板にいても面白くないだろ(^^
仮定
1)2CHにハマっている者はバカである
2)数学板はバカ板である
結論
仮定が成り立つとすれば、2CH 数学板にいるものは、ほとんどバカである
自分が例外と思い込んでいる者もバカである(^^
QED(^^

156:現代数学の系譜 古典ガロア理論を読む
17/07/14 10:53:42.50 8xDmC3Sj.net
>>137
¥さん、どうもスレ主です。
>そして『自分を絶対に騙さない恭司さん』からも多くを学
>びました。恭司さんも正に「数学者の鑑」だと思いますね。
斎藤恭司先生ですね
過去スレ 35 スレリンク(math板:641番)
数学セミナー 2017年7月号 プロの研究者はどうやって研究を行っているか……吉永正彦の
吉永正彦先生の指導教官ですね。前にも出たし、吉永正彦記事にも記載がある(^^
URLリンク(ja.wikipedia.org)
齋藤恭司
齋藤 恭司(さいとう きょうじ、1944年 - )は、日本の数学者。京都大学名誉教授。専門は複素解析幾何学、複素解析学、周期積分など。
東京出身。東京大学理学部数学科卒(1967年)。ゲッティンゲン大学博士課程修了(1971年)。東京大学、京都大学数理解析研究所教授を経て、数物連携宇宙研究機構主任研究員。
京都大学数理解析研究所元所長。1990年のICMに招待講演者として招聘された。
・原始保型形式の理論の創始
・特異点の変形のモジュライ上の周期写像によって平坦構造を発見した。
・量子コホモロジー環と非常によく似ていて、それらを統一的に扱うフロベニウス多様体は現在の数理物理学(特にミラー対称性)において重要な役割を果たしている(とされる)。さらには消滅サイクル束のホッジ理論まで考えている。
・孤立特異点の複素解析学(井上学術賞)
・特異点のルート系やルート系の表現論
・独自の可積分系を構築しようとしている
・還暦越えてなお研究が盛ん
外部リンク
斎藤恭司 | IPMU-数物連携宇宙研究機構 URLリンク(www.ipmu.jp)

157:現代数学の系譜 古典ガロア理論を読む
17/07/14 11:02:07.00 8xDmC3Sj.net
>>144 参考補足
URLリンク(www.ipmu.jp)
斎藤恭司 | IPMU-数物連携宇宙研究機構
(抜粋)
単位円周の長さは 2πという最も古い数学の対象です。よく知られるように単位円Cは二次方程式 x2+y2=1 で与えられ、複素数 z=x+iy ∫○dz/z=2√(-1)πを使えば となります。
このような積分を周期積分、その値を周期と呼びます。理由は不定積分 ∫dz/z の逆関数が2√(-1)π を周期とする指数関数だからです。
また、この周期積分はA1型のリー環により記述できます。次に円周Cのかわりに定義方程式が三、四次の曲線上の複素積分を考えると、2つの基本周期をもつ楕円積分が現れ、その不定積分の逆関数が楕円関数となります。
これらの周期積分は位数2のリー環A2、B2、G2で記述されます。このように周期積分を通して深い数学構造が次々に現れるのは面白いことです。
私はこれらの周期積分を高次元化する積分形式としての原始形式を圏論的に構成するために、無限ルート系と無限次元リー環を研究しています。
その研究過程で生まれた平坦構造(フロベニウス構造)と平坦座標という概念は、不思議なことに物理におけるストリング理論のミラー対称構造を記述する言語のひとつにもなっています。
原始積分による周期写像の逆写像の平坦座標成分である原始保型形式の決定は、今後の重要課題です。
(引用終わり)

158:現代数学の系譜 古典ガロア理論を読む
17/07/14 11:05:44.00 8xDmC3Sj.net
>>145 補足
複素数 z=x+iy ∫○dz/z=2√(-1)πを使えば となります。(原文まま)
 ↓
複素数 z=x+iyを使えば ∫○dz/z=2√(-1)π となります。
だろうね(^^
まあ、重箱の隅だが(^^

159:現代数学の系譜 古典ガロア理論を読む
17/07/14 11:10:17.64 8xDmC3Sj.net
>>146 補足の補足
∫○dz/z
 ↓
∫○1/z dz と書かないと、中学では減点されるかもね。試験ではご注意(^^

160:132人目の素数さん
17/07/14 11:36:16.50 XfNSXTtx.net
おっちゃんです。
まあ、他人の噂をするときは誹謗中傷などに気を付けることだ。
変なことを書くと、書き込む寸前に名誉棄損、書き込む内容に責任が云々
とかなるようなことがしばしばあるような気がする。

161:現代数学の系譜 古典ガロア理論を読む
17/07/14 11:43:13.99 8xDmC3Sj.net
>>145
おっちゃん、どうも、スレ主です。
>単位円周の長さは 2πという最も古い数学の対象です。
>複素数 z=x+iyを使えば ∫○dz/z=2√(-1)π となります。
>理由は不定積分 ∫dz/z の逆関数が2√(-1)π を周期とする指数関数だからです。
おっちゃん、ここ分かるか?(^^
”複素数 z=x+iyを使えば ∫○dz/z=2√(-1)π となります”は、ふつうは留数定理から出すんじゃないかな?
”不定積分 ∫dz/z の逆関数・・だから”という理由付け、分かりますか?(^^

162:現代数学の系譜 古典ガロア理論を読む
17/07/14 11:46:56.45 8xDmC3Sj.net
>>148
おっちゃん、どうも、スレ主です。
ああ、そうだね
>>143だね。「2CHにハマっている者」と、「数学板」運営者から、「バカとはなんだ」と言われるかもね~(^^
で、>>149頼む(^^

163:132人目の素数さん
17/07/14 11:54:25.43 XfNSXTtx.net
>>149-150
郵便局とかの雑用が色々あるんで、話は後で。

164:現代数学の系譜 古典ガロア理論を読む
17/07/14 11:58:45.67 8xDmC3Sj.net
>>142 訂正
>対角線論法が出てくるんだったね、確か・・(^^
正確には、「否定の自己言及」だね(^^
URLリンク(blogs.yahoo.co.jp)
実は不完全なゲーデルの不完全性定理 2015/8/29 mid***** yahoo ブログ
(抜粋)
この背景(本質)には「否定の自己言及」という、文章・論理的構造と意味・解釈の間の不整合が横たわっている。
通常「自己言及」とだけ呼ばれているが、当ブログではより問題の本質を捉えるため、フィードバックに(発散する)ポジティブと(収束する)ネガティブがあるように、
自己言及にも矛盾を引き起こすものと引き起こさないものがあることを指摘し、区別する。「矛盾の自己言及」と言ってもよい。
一般にパラドクスと呼ばれるものには色々とからくりがあるが、この「否定の自己言及」によるものは数多く存在する。
結局、不完全性定理は、全


165:命題の外側に消え去る。 ここで一つ問題を提起したい。 「ゲーデルの形式的体系において、自己言及を除く命題(すなわち、1変数類記号のマトリクスにおいて対角成分以外の文。不動点以外)の中に、AとnotAのいずれも証明できない文Aが存在するか」 対角線論法の使用禁止! もしこれが証明されれば、本当に完全な不完全性定理となり、数学は衝撃を受けるだろう。 (引用終わり)



166:現代数学の系譜 古典ガロア理論を読む
17/07/14 12:01:56.78 8xDmC3Sj.net
>>152 補足
下記は、ずいぶん以前にも紹介したが(^^
URLリンク(www.kurims.kyoto-u.ac.jp)
自己言及の論理と計算 長谷川真人
京都大学数理解析研究所 数学入門公開講座(2002 年 8 月 5~8 日)の予稿を改訂(2006 年 5 月 / 2007 年 8 月/ 2011 年 6 月)

(抜粋)
目次
I 自己言及と対角線論法

167:偉大なる哀れな素人
17/07/14 12:33:07.60 /RvkM8C5.net
>>152-153
ゲーデルの不完全性定理の証明に
対角線論法が使われていると市川氏の投稿で知ったが、
どこに使われているのか分らなかった(笑
とにかく対角線論法は間違いだから、
ゲーデルの不完全性定理が、その対角線論法による証明
の上に成立しているのだとしたら、不完全性定理は間違いである。
それからラッセルのパラドックスは、
数学者が思っているようなパラドックスではない。
簡単に言えば、あれは言葉の詐欺である。

168:偉大なる哀れな素人
17/07/14 12:41:41.96 /RvkM8C5.net
僕が読んだ本にはこう書いてあった。
自分自身を元として含まない集合を正規集合、
自分自身を元として含む集合を非正規集合と名付ける。
すべての正規集合の集合をNとすると、Nは正規集合か非正規集合か。
これがラッセルのパラドックスである。
しかしこれをよく読むと二つの詐欺が隠されている。
どこが詐欺か知りたければ僕の本を読むこと(笑

169:132人目の素数さん
17/07/14 13:02:46.76 WlcB2qq8.net
>>149
馬鹿は日本語が読めない
>理由は・・・
の直前の文章は
「このような積分を周期積分、その値を周期と呼びます。」
つまり、
「積分∫○dz/zを周期積分、その値を周期と呼ぶ理由は」
であって、それを受けて
「不定積分 ∫dz/z の逆関数が2√(-1)π を周期とする指数関数だからです。」
と答えている
周期積分、周期の由来は周期関数から
この程度の日本語が読めない人が数学書を理解できないのは当然
小学生に大学生の教科書が読めるわけがない

170:132人目の素数さん
17/07/14 15:55:07.34 WlcB2qq8.net
>>152
>「ゲーデルの形式的体系において、
> 自己言及を除く命題の中に、
> AとnotAのいずれも証明できない文A
> が存在するか」
存在する(Paris Harrington Theorem)
www.math.tohoku.ac.jp/~tanaka/intro.html
「集合論における選択公理のような具体的な独立命題が
 ペアノの算術公理系にもあるか否かは,
 1977年にパリスとハーリントンが
 ラムゼイの定理の一種がそれになることを示すまで
 大問題であった」

171:132人目の素数さん
17/07/14 17:54:12.44 XfNSXTtx.net
>>149-150
>”複素数 z=x+iyを使えば ∫○dz/z=2√(-1)π となります”は、ふつうは留数定理から出すんじゃないかな?
積分路変形の原理(コーシーの積分定理から従う)とかからでも求まる。求め方はご自由に。
>”不定積分 ∫dz/z の逆関数・・だから”という理由付け、分かりますか?(^^
不定積分 ∫dz/z は =logz+c cは複素数の定数 と表わせて、
その逆関数は Ce^z Cも複素数の定数 になって、
複素変数 z, w について e^z=e^w なることと zが z=w+2nπi n∈Z の形に表せること
とが同値となるので、先の逆関数 Ce^z は 2√(-1)π=2πi を周期とする指数関数になる。
じゃ、おっちゃん寝る。

172:132人目の素数さん
17/07/14 18:13:12.66 XfNSXTtx.net
>>149-150
>>158の訂正:
不定積分 ∫dz/z → 不定積分 w=∫dz/z
逆関数について:Ce^z → Ce^w

173:132人目の素数さん
17/07/14 20:49:03.39 rWHNuuTq.net
>昔、高校時代にゲーデルの不完全性定理の通俗解説書を読んだ記憶がある。
何をかっこつけてんのかお前は
お前の全勉強が通俗解説書だろうが
只の一冊も専門書を読んでないアホ主

174:132人目の素数さん
17/07/14 20:56:49.44 rWHNuuTq.net
その証拠にお前は大学生が一番最初に勉強する数列をまったく理解していない
数列の連結?アホかよw

175:現代数学の系譜 古典ガロア理論を読む
17/07/14 22:07:26.42 9Pw6pau2.net
>>156 >>158-159
ID:WlcB2qq8さん、おっちゃん、どうも、スレ主です。レスありがとう
ID:WlcB2qq8さん、なかなか力あるね。確かに、その通りだね
聞きたかったのは、「周期積分」という用語が、あまり一般的でないから、おっちゃんが以前スレ20で「周期」について、教えてくれたので質問したんだが(^^
いや、>>145の斎藤恭司先生の一般向け自己紹介が、「周期積分」という耳慣れない用語から入っているので、「おや?」と思ったんだ
斎藤恭司先生は、¥さんいうように、けれんみなしの直球勝負という方かな>>137
過去スレ20 より抜粋
おっちゃん スレリンク(math板:368番) 2016/07/02
超越性の判断を目的に、ザギエとコンツェビッチが提案した周期環の概念がある。
有理関数か無理関数の積分によって表せるかどうかが周期環の点かどうかの基準になる。
¥さん スレリンク(math板:395番) 2016/07/02
三角関数の周期とかがπですやろ。そやしソレは「普通の考え方」ですわ。
ほんでソレが楕円函数やったら二重周期函数ですやろ。そやし昔の数学者
が嬉々としてそういう事を調べたんは、まあ自然な事ですわ。

注意:三角関数は円積分の逆関数として見る。
スレ主 スレリンク(math板:401番) 2016/07/02
積分の逆関数という話は、高木の本に書いてましたね
スレ主 スレリンク(math板:488番) 2016/07/03
まず、関連のご紹介
URLリンク(www2.kobe-u.ac.jp)
周期:積分で表わされる数について 齋藤政彦 神戸大学 2008
(抜粋)
今回の講演では, 周期という特別の複素数のクラスを扱いたいと思います.主に
M. コンツェビッチとD. ザギエの論説 と最近の神戸大の吉永正彦のプレプリン
ト[4] を参照しつつ, 数に関する新しい感覚と数学の広がりをお伝えできればと思い
¥さん スレリンク(math板:505番) 2016/07/03
その「吉永さんの結果」って凄く面白いですね。政彦氏の文章で初めて知
りましたわ。流石に恭司さんの弟子っぽい仕事で、いい感じの数学ですね。

176:132人目の素数さん
17/07/14 22:18:56.21 T/oWXeUA.net
ここは焼かんのねw

177:¥氏
17/07/14 23:34:58.43 ZICaIrqM.net


178:現代数学の系譜 古典ガロア理論を読む
17/07/15 06:11:42.41 uQKi2Au+.net
>>157
ID:WlcB2qq8さん、どうも、スレ主です。レスありがとう
ID:WlcB2qq8さん、なかなか力あるね。
調べてみると、過去スレ6で、不完全性定理が登場しているね。過去スレ 8で下記のような話を紹介している。あと、なんどか登場しているね
”パリスとハーリントン”の話は、このスレで話題にしたことは無かったが、wikipediaにあったね(下記)。
どこかで似たようなことを読んだ気がしたが、思い出せなかった・・(^^
過去スレ 8 スレリンク(math板:26番) 2013/03/31(日) (抜粋)
1930年9月7日にケーニヒスベルクで開催されていた「厳密科学における認識論」についての第2回会議においてクルト・ゲーデルが第一不完全性定理を発表すると、発表の後にノイマンはゲーデルと個人的に会話を行い、定理の内容を直ちに理解した。
その会議の後、ゲーデルは第二不完全性定理を得て論文にまとめ、論文は11月17日に受理された。いっぽう、ノイマンは独力で第二不完全性定理を導き、その結果を11月20日付けの手紙でゲーデルに知らせた。
過去スレ 8 スレリンク(math板:99番) 2013/04/06(土) (抜粋)
URLリンク(d.hatena.ne.jp)


179:%EA%CD%FD ゲーデルの不完全性定理(Godel's Theorem) 簡単に言えば、「完全で無矛盾な公理系は存在しない」ということを証明した*1。 数学基礎論の分野で提出された定理だが、その影響は数学はもとより、論理学や哲学やその他の人間の知(理性)の全分野にも及ぶものであり、フォン・ノイマンをして「(その業績は)不滅以上のものである」と言わしめた。 (引用終り) つづく



180:現代数学の系譜 古典ガロア理論を読む
17/07/15 06:12:22.35 uQKi2Au+.net
>>165 つづき
URLリンク(ja.wikipedia.org)
ゲーデルの不完全性定理
(抜粋)
決定不能命題の例
本節では一つ目の意味で「決定不能」と書く。
決定不能ということが意味するのは、あくまで使用されている特定の形式的体系の下ではその命題の真偽をいずれも証明できないということにすぎない。
真理値を決して知ることができないか、または真理値の定義自体が無効となるような、いわゆる「絶対的決定不能」命題が存在するのかどうかは数理哲学における論争の的となっている。
連続体仮説はZFC(集合論における標準的な公理系)の下では証明も否定の証明もできない。また、選択公理もZF(ZFCに含まれる公理から選択公理を除いたもの)では証明も否定の証明もできない。
1940年、ゲーデルはこれらの命題が何れも ZF または ZFC 集合論では否定を証明できないことを証明した。1960年代、コーエンはこれらがいずれも ZF から証明できず、また連続体仮説が ZFC から証明できないことを証明した。
マチャセビッチによるヒルベルトの第10問題によって決定不能な命題の例が得られる。そのような例はディオファントス方程式の外側に存在量化子を幾つか並べた形として得られる。すなわち不完全性定理の前提条件を満たす形式的体系において、解の存在が証明も反証もできないようなディオファントス方程式が存在する。
1973年、群論におけるホワイトヘッドの問題(英語版)が標準的な集合論では決定不能であることが示された。
つづく

181:現代数学の系譜 古典ガロア理論を読む
17/07/15 06:13:17.83 uQKi2Au+.net
>>166 つづき
1977年、パリスとハーリントンは、ラムゼーの定理の一種であるパリス・ハーリントンの定理(英語版)が、一階算術の公理体系であるペアノ算術の下では決定不能だが、より大きな二階算術の体系では真であることを証明できることを証明した。
カービーとパリスは後にグッドスタインの定理(自然数の数列に関する命題であり、パリス・ハーリントンの原理よりもいくらか易しい)がペアノ算術では決定不能であることを示した。
計算機科学で応用される Kruskal の木定理(英語版)はペアノ算術では決定不能だが集合論では証明できる。実際、Kruskalの木定理(またはその有限版)は、可述主義(英語版)[4]と呼ばれる数学的哲学に基づいて構築されたもっと強い体系の下でも決定不能である。
これに関連し、更に一般的な graph minors 定理(英語版)(2003年)は計算複雑性理論に影響する。
グレゴリー・チャイティンはアルゴリズム情報理論における決定不能命題を発見し、その状況下で新たな不完全性定理を得た。
チャイティンの定理によると、十分な算術を表現可能ないかなる理論においても、どのような数であっても c よりも大きなコルモゴロフ複雑性を有することがその理論上では証明できないような、上限 c が存在する。
ゲーデルの定理が嘘つきのパラドックスと関係しているのに対し、チャイティンの結果はベリーのパラドックスに関係している。
つづく

182:現代数学の系譜 古典ガロア理論を読む
17/07/15 06:14:02.33 uQKi2Au+.net
>> つづき
不完全性定理の成立しない体系
不完全性定理は「『自然数論を含む帰納的公理化可能な理論が、無矛盾(ω無矛盾)であれば』~」という形の定理である。したがって、自然数論を含まない公理系や、帰納的公理化可能でない理論が完全であっても、不完全性定理とは矛盾しない。
真の算術やペアノ算術の無矛盾完全拡大などは無矛盾かつ完全であるが、帰納的公理化可能でない。�


183:ニくに真の算術は算術的に定義不能である。この結果はタルスキの真理定義不可能性として知られる。 プレスバーガー算術は帰納的公理化可能、無矛盾かつ完全である。プレスバーガー算術は加法しか含まない公理系であり、ゲーデル数によるコード化のテクニックを扱えない。そのため、不完全性定理は適用できない。 また、実閉体の理論やユークリッド幾何学も完全であり、(直観に反して)算術を含まないため、不完全性定理は適用できない。したがって実閉体の理論は決定可能である。もっと精密にいうと実閉体の理論では量化記号消去が可能である。この事実は数式処理系の実装などに応用されている。 なお、群や環の公理などは、「自然数論を含まない帰納的公理化可能かつ無矛盾な公理系」であり、不完全性定理は適用できないが、不完全である。例えば、可換群と非可換群がともに存在することから、健全性定理より、群の公理からは積の可換性は証明も反証もできない。 (引用終り) 以上です



184:132人目の素数さん
17/07/15 08:13:25.49 OkksdbBE.net
>>162
コンセヴィッチとザギエの周期の話なら、もともとは
1/zの積分(ln)の逆関数(exp)の周期性に基づくが
一般化によって、本来の意味はどっかにいってしまった

185:132人目の素数さん
17/07/15 08:19:14.78 OkksdbBE.net
>>168
ユークリッド幾何学から平行線公準を除いた理論は不完全
なぜなら平行線公準は上記の理論における決定不能命題だから
ユークリッド幾何学も非ユークリッド幾何学も無矛盾
というのはそういうこと

186:132人目の素数さん
17/07/15 08:23:39.70 OkksdbBE.net
「実閉体の理論は算術を含まない」というのは
実閉体の理論の中で自然数を定義できない
ということ
ついでにいうと、実閉体の定義は、カントールやデデキントの実数体の定義と異なる
リンクと引用は、コピペマニアにお任せしよう

187:132人目の素数さん
17/07/15 08:31:13.11 OkksdbBE.net
>昔、高校時代にゲーデルの不完全性定理の通俗解説書を読んだ記憶がある。
吉永 良正のブルーバックスの本は酷い出来なので
これを読んだなら御愁傷様といわざるを得ない

188:132人目の素数さん
17/07/15 08:42:20.09 OkksdbBE.net
>何をかっこつけてんのかお前は
今時は
「中学校で”√2の無理数性”の背理法による証明を習った」
といっても「何をかっこつけてんのか」とは言われないだろうなぁ・・・

189:現代数学の系譜 古典ガロア理論を読む
17/07/15 10:32:25.47 uQKi2Au+.net
>>169-173
ID:OkksdbBEさん、どうも。スレ主です。
貴方は、なかなか力あるね~
このスレで、数学的な内容のカキコをする人は、ごく小数でね(^^
常連では、おっちゃんと¥さんくらいでね
その他の人は、からっきしダメ(^^
まあ、実力が無いんだろうね(実力を見透かされないようにしているんだろうね)(^^
そもそも、自分の主張に理由が無い発言が多い
多分¥さんから言わせると、「フランスでは考えられない!」だろうと。数学板なのに、自分の主張に(数学の)理由が無いとね~(^^
理系としては、「自分の主張を論理的に説明できない日本人ってね~。まあ、文系だろう」と、出来るだけスルーだ(^^
そういう意味で、こういうことをすらすら書ける貴方の数学の実力は凄いね~(^^
つづく

190:現代数学の系譜 古典ガロア理論を読む
17/07/15 10:35:50.23 uQKi2Au+.net
>>174 つづき
で、細かいが
>>169
>コンセヴィッチとザギエの周期の話なら、もともとは
これは、齋藤恭司先生としては、コンセヴィッチとザギエの周期と同じ意味だろうね
記憶では、コンセヴィッチとザギエの周期論文を吉永先生に紹介したのが齋藤恭司先生だと(院生時代)、吉永先生がどこかに書いていたと思った
あと、下記、齋藤恭司先生 2011 年度幾何学賞授賞業績説明
URLリンク(mathsoc.jp)
(抜粋)
授賞題目: 周期積分の理論の現代化の実現
彼の原動力は一貫して,18~19 世紀のオイラー,アーベル,ヤコビらによる
楕円積分・周期積分の理論を現代によみがえらせようという壮大な構想で,その実現のため
・・・などの理論を次々に建設しました.これは後にKontsevich などによる非可換ホッジ構
造や,Dubrobvin などによる量子コホモロジー等の研究に用いられているフロベニウス多様
体を先取りしたものであり
(引用終り)
>>170 その通り
>>171 実閉体の定義は良く知らないんだが、検索すると、過去スレで下記があったね (実閉体の定義は後で確認しておく(^^)
過去スレ 21 スレリンク(math板:343番) 2016/07/31
URLリンク(fuchino.ddo.jp)
想定外の数学- 不完全性定理以降の数学(続)
神戸大学大学院・システム情報学研究科渕野昌(Sakae Fuchino)
つづく

191:現代数学の系譜 古典ガロア理論を読む
17/07/15 10:37:01.47 uQKi2Au+.net
>>175 つづき
(抜粋)(当時は引用していなかったが)
P8 無矛盾で完全であることが有限の立場から証明できる体系のうち,重要なもの
の1 つに,実閉体の理論をあげることができる.この理論の無矛盾性と完全性の重
要性の理由の1 つは,うまく定式化すると,初等的な幾何学の理論が,この理論と
双方向に解釈できるようになるからである| たとえばタルスキーの[7] を参照さ
れたい.したがって,このタルスキーの定式化したような初等幾何は,無矛盾で完
全でしたがって決定可能ですらある.
(16)もっとも,後に[6] でヒルベルトとベルナイスは,[6] で,代数閉体の理論の無矛盾性,完全性
の完全に有限な立場からの証明を与えている.
(引用終り)
>>172 "吉永 良正のブルーバックスの本は酷い出来なので"は、違うね。ハードカバーの本だった
>>173 "「中学校で”√2の無理数性”の背理法による証明を習った」"は、あったような気がする。
 中学の数学教師が、中三で3x3マトリックスとクラメールの公式を教えてくれたよ。もちろん、授業外だが。合同式(≡)もあったような(^^
以上

192:現代数学の系譜 古典ガロア理論を読む
17/07/15 11:04:57.34 uQKi2Au+.net
>>175 補足
>実閉体の定義
まあ、下記でも
URLリンク(www.kurims.kyoto-u.ac.jp)
実閉体の生い立ち 名古屋大学多元数理科学研究科 塩田昌弘 数理解析研究所講究録 第1764 巻2011 年
(抜粋)
1. 序文
実閉体の概念はEArtin が1927 年にHilbert の第17 問題を解くために導入した
ものである。その後1980 年代から実閉体上で代数幾何を考えるという、実代数幾何
学が盛んに研究されるようになった。
Artin による第1 7 問題の証明は日本語では[2] に書かれていて、読むのに代数の基
本的知識をいくつか必要とするだけである。
実代数幾何学では、その証明を少し代えたものが、代表的な基本的なーつの証明方法になっている。ここではその証明
を紹介する。
その証明方法を日本語で、しかも実代数幾何学の言葉をできるだけ使わずに紹介するのは意味のあることだと思う。それで、
この論文を書くことにした。
一言でその証明方法を語れば、ある体でconstructive に記述された問題で、解けるか
どうか分からないとき、問題の形をそのままにして、体のみを変換することである。例
として$R$ を体として、問題∃ x∈ R, x^2=2 を考える.この問題はR=R~ では解けて、
R=Q では解けない。これでは困るが、体が実閉体ならうまくいく。もしR で解ける
かどうか分からない問題のとき、解けるようにR を大きな体R_に置き換える。次に説
明するArtin-Lang の定理によればR もR_も実閉体なら、もしR_で解ければR で必ず
解ける。これが説明したい証明方法である。
2. 定義と例とその基本的な性質



193:[2] 永田雅宜、可換体論、裳華房、1967. (引用終り) 余談だが、永田雅宜先生の本は、難解で有名とか。読んだことはないが(^^ つづく



194:現代数学の系譜 古典ガロア理論を読む
17/07/15 11:07:17.87 uQKi2Au+.net
>>177 つづき
ついでに
URLリンク(ja.wikipedia.org)
形式的に実な体
抽象代数学において体が形式的に実(けいしきてきにじつ、英: formally real)、または形式的実体(けいしきてきじつたい、英: formally real field)とは、?1 の平方根を持たず(さらに ?1 が平方元の和として表すことができない)、また平方元の和が零に等しいという関係式は自明な(つまり、その和に現れる全ての平方元がそれぞれ零に等しい、
例えば x2 + y2 = 0 ⇒ x = y = 0)場合に限られるなどの、実数体とも共通する性質を満たすことを言う。形式的実体を単に実体(じつたい[1]、英: real field[2])と呼ぶこともある[注 1]。
与えられた体が形式的に実であることは、その体を(必ずしも一意的ではない方法によって)順序体にすることができるということを特徴づける性質である。
4 実閉体
形式的に実な真の代数拡大を持たない形式的実体は実閉体(英語版)と呼ばれる[8]。即ち、形式的実体 R が実閉 (real closed) であるとは、E が形式的実体 R の形式的実な代数拡大体ならば必ず E = R を満たすときに言う[9]。実閉体において任意の奇数次多項式は根を持ち[10]、任意の正元は何らかの元の平方根を成す[11]。
形式的実体 K に対し、K を含む代数閉体 Ω をとる。このとき、K を含む Ω の実閉な部分体が存在する。これを形式的実体 K の実閉包 (real closure) と呼ぶ。実閉体は一意的な順序によって順序体にすることができる[8]。
注釈
1^ 実数のことを単に "real(s)" と呼んだり、実数体 R 上の構造という意味で「実-」と言う接頭辞を用いることもあるが、実体を実数体 R (the filed of reals/the real field[3])と混同してはならない。
2^ この二つの代数的構造は(型の)異なる代数的構造である。実際、順序体は和と積のふたつの演算と全順序というひとつの関係を持つが、形式的実体は和と積の二つの演算を持つのみである。
(引用終り)
以上です

195:現代数学の系譜 古典ガロア理論を読む
17/07/15 11:15:40.50 uQKi2Au+.net
>>168 補足
”実閉体の理論は決定可能である”とか
”群や環の公理などは、「自然数論を含まない帰納的公理化可能かつ無矛盾な公理系」であり、不完全性定理は適用できないが、不完全である”とか(^^
覚えておこう(^^
>>168より”不完全性定理の成立しない体系
また、実閉体の理論やユークリッド幾何学も完全であり、(直観に反して)算術を含まないため、不完全性定理は適用できない。
したがって実閉体の理論は決定可能である。もっと精密にいうと実閉体の理論では量化記号消去が可能である。この事実は数式処理系の実装などに応用されている。
なお、群や環の公理などは、「自然数論を含まない帰納的公理化可能かつ無矛盾な公理系」であり、不完全性定理は適用できないが、不完全である。
例えば、可換群と非可換群がともに存在することから、健全性定理より、群の公理からは積の可換性は証明も反証もできない。”
(引用終り)

196:現代数学の系譜 古典ガロア理論を読む
17/07/15 12:43:26.64 uQKi2Au+.net
sage

197:現代数学の系譜 古典ガロア理論を読む
17/07/15 12:43:57.77 uQKi2Au+.net
>>166 補足
下記補足「本講義では、当分野における古典的な成果であるゲーデルの不完全性定理とその周辺について概説する。それが示唆するのは数学の本質的な限界であると同時に開かれた可能性であり、確固たる土台の非存在であると同時に諸理論が織りなす空間の豊饒さである。」
URLリンク(www.kurims.kyoto-u.ac.jp)
数学入門公開講座 京都大学 数理解析研究所
URLリンク(www.kurims.kyoto-u.ac.jp)
『数学』を数学的に考える  照井 一成 2009年7月30日
(抜粋)
数学にはいったい何ができて何ができないのだろうか。その可能性と限界を知りたい。そのために数学者の行う活動(定理を証明したり、反例を考案したり)を数学的に分析するのがメタ数学、ないしは数学基礎論と呼ばれる分野である。
本講義では、当分野における古典的な成果であるゲーデルの不完全性定理とその周辺について概説する。それが示唆するのは数学の本質的な限界であると同時に開かれた可能性であり、確固たる土台の非存在であると同時に諸理論が織りなす空間の豊饒さである。
方針としては算術階層に重点をおき、不完全性やさまざまな決定不能問題をその中に位置づけていく形で、統一的な解説を行う予定である。
つづく

198:現代数学の系譜 古典ガロア理論を読む
17/07/15 12:44:


199:34.13 ID:uQKi2Au+.net



200:132人目の素数さん
17/07/15 13:16:25.32 OkksdbBE.net
>>179
>覚えておこう(^^
文系かい?
数学は覚えるものに非ず

201:132人目の素数さん
17/07/15 13:22:06.99 OkksdbBE.net
>>174
>貴方は、なかなか力あるね~
>>1にもおっちゃんにも数学の力は全くないな
¥は父親と仲間への恨み言ばかりで
数学の話などロクにしないから
数学的には死んだも同然
数学者に人格の良さなど期待しないし
別に前科の一つや二つあっても構わないが
数学の話を一切しなくなったら終わり

202:132人目の素数さん
17/07/15 13:22:07.04 OkksdbBE.net
>>174
>貴方は、なかなか力あるね~
>>1にもおっちゃんにも数学の力は全くないな
¥は父親と仲間への恨み言ばかりで
数学の話などロクにしないから
数学的には死んだも同然
数学者に人格の良さなど期待しないし
別に前科の一つや二つあっても構わないが
数学の話を一切しなくなったら終わり

203:132人目の素数さん
17/07/15 13:41:18.39 OkksdbBE.net
>>174
>自分の主張に理由が無い発言
その典型が>>1
「「箱入り無数目」の記事は間違ってる!」
だな
>>1は「自分の主張を論理的に説明できない」点で
理系とか文系とかいう以前のブルーカラーかと思われる
引用は記憶しか能のない馬鹿のすること
思考できる人間は他人の言葉を
狂信したりしないものだ

204:現代数学の系譜 古典ガロア理論を読む
17/07/15 13:53:22.51 uQKi2Au+.net
>>186
それだけ力がありながら、時枝記事がガセと気付かないのか?(^^
まあ、後でやろう(^^

205:現代数学の系譜 古典ガロア理論を読む
17/07/15 13:55:09.64 uQKi2Au+.net
>>183
いまどきの数学は、ある程度知識がないとだめだろうね(^^
そう思わないか?(^^

206:132人目の素数さん
17/07/15 14:00:37.40 YWq1m5g9.net
>時枝記事がガセと気付かないのか?(^^

バカ丸出し

207:132人目の素数さん
17/07/15 15:15:34.15 PpT0J1Vv.net
>>184-186
おっちゃんです。
>>1にもおっちゃんにも数学の力は全くないな
余計なお世話だ。
数学的書き込みを一切しないスレ主はともかく、
箱入り娘という一面だけに対するレスだけを見て数学全体の力を判断するのは大間違い。

208:132人目の素数さん
17/07/15 15:26:41.59 OkksdbBE.net
>>187
そもそもなぜガセだと思うのか?
自分が予測できないからかね?
>後でやろう(^^
今やるぞ
いかなる無限列についても、ある箇所から先が一致する同値関係が定義でき
選択公理によってその同値関係による同値類から代表列をとることができる
代表列がわかればある箇所から先は予測可能だ
問題は「ある箇所」つまり決定番号がどこか、だけ
1列サンプルをとれば、予測したい列の決定番号が
サンプルの決定番号より小さい確率は1/2
2列サンプルをとれば、予測したい列の決定番号が
サンプルの決定番号の最大値より小さい確率は2/3
・・・
n-1列サンプルをとれば、予測したい列の決定番号が
サンプルの決定番号の最大値より小さい確率は(n-1)/n
選択公理を否定しないのなら、予測したい列の決定番号が、
サンプルの決定番号の最大値より必ず大きくなると
主張するしかない それはオカルトそのものだろう

209:132人目の素数さん
17/07/15 15:29:27.76 OkksdbBE.net
>>190
おっちゃんには申し訳ないが
>>1がおっちゃんの能力を買い被っているので
正直に言わせていただいた
日本語の文章が正しく読めない人に
数学の理論が正しく理解できるわけがない

210:132人目の素数さん
17/07/15 15:35:07.61 OkksdbBE.net
>箱入り娘という一面だけに対するレスだけを見て
>数学全体の力を判断するのは大間違い。
モンティ・ホール問題を間違った
ポール・エルデシュのつもりかね?
URLリンク(ja.wikipedia.org)

211:132人目の素数さん
17/07/15 15:35:55.65 PpT0J1Vv.net
>>192
正当な評価をすればいい。
スレ主に他人の力を評価する資格はない。

212:132人目の素数さん
17/07/15 15:40:05.29 OkksdbBE.net
>>194
>正当な評価をすればいい。
そうさせていただいた

213:132人目の素数さん
17/07/15 15:42:01.98 PpT0J1Vv.net
>>193
エルデシュの例は知らなかったが、闇雲に他人を評価すると、間違った評価をしかねない。
そのような例は幾つかある。他人を評価する際は、このようなことに注意せねばならない。

214:132人目の素数さん
17/07/15 15:46:44.79 PpT0J1Vv.net
>>195
それじゃ、評価好きサンは他人を勝手に評価してくれ。
私には>>196のような確固たる信念がある。

215:132人目の素数さん
17/07/15 15:47:17.17 OkksdbBE.net
>>196
自分の能力なんて自分自身ではわからんよ

216:132人目の素数さん
17/07/15 15:48:29.58 OkksdbBE.net
>>197
>私には確固たる信念がある。
それを人は「自惚れ」という名の妄想と呼ぶ

217:132人目の素数さん
17/07/15 15:51:18.32 PpT0J1Vv.net
>>192
>日本語の文章が正しく読めない人に
>数学の理論が正しく理解できるわけがない
ちなみに、日本語を読んで理解するという前提の下では、これは当たり前のこと。
いわずもがな。

218:132人目の素数さん
17/07/15 15:54:33.23 PpT0J1Vv.net
>>198-199
自分自身の能力の限界は分からんわな。

219:現代数学の系譜 古典ガロア理論を読む
17/07/15 15:58:28.86 uQKi2Au+.net
>>148
おっちゃん、どうも、スレ主です。
戻る 過去スレ 35 スレリンク(math板:624番)
”1)同値関係 ”を説明しよう
URLリンク(ja.wikipedia.org)
数学において、同値関係(どうちかんけい、英: equivalence relation)は反射的、対称的かつ推移的な二項関係を言う。これらの性質の帰結として、与えられた集合において、一つの同値関係はその集合を同値類に分割(類別)する。
定義
ある集合 S において、二項関係 ? が次の性質を満たすとき、? は S 上の同値関係であるという。S の任意の元 a, b, c に対し、
反射律: a ? a.
対称律: a ? b ならば b ? a.
推移律: a ? b かつ b ? c ならば a ? c.
上の三つをまとめてしばしば同値律という[1]。? が同値関係であるとき、a ? b であることを、a と b は同値であると言う[1]。
・反射律: URLリンク(ja.wikipedia.org) 反射関係の例:「A は B と等しい」(等式) 、非反射関係の例:「A は B より大きい」
・対称律: URLリンク(ja.wikipedia.org) 例 「(A は B と)結婚している」は対称関係だが、「(A は B より)小さい」は対称関係ではない。
・推移律: URLリンク(ja.wikipedia.org) 例 「AはBと等しい」(等式)、「AはBより小さい」、「AはB以下である」(不等式)
同値関係のとき、反射律と対称律とはすぐ分かるときが多いので、推移律のみ確認する場合が多い
「推移律: a ? b かつ b ? c ならば a ? c」は、例えていえば、”仲間”みたいな関係だと思えば、そう外れていない
a と bが仲間で かつ b と cが仲間なら、 a と cが仲間だと
これから、「a ? b かつ b ? c にも関わらず、 a not? c」は排除される。なので、同値類の集合が一意に定まる
(∵ある同値類の集合をHとして、H={a,b,c・・


220:}でd ∈Hなら、d ? a かつ d ? b かつ d ? c ・・・。  逆に、d not∈Hなら、d not? a かつ d not? b かつ d not? c ・・・。例外はない。 ) おっちゃん、分かる?



221:現代数学の系譜 古典ガロア理論を読む
17/07/15 16:00:59.26 uQKi2Au+.net
>>148
おっちゃん、どうも、スレ主です。
戻る 過去スレ 35 スレリンク(math板:624番)
”2)商集合、代表(代表番号関連) ”を説明しよう
URLリンク(ja.wikipedia.org)
同値類
(抜粋)
フォーマルには,集合 S と S 上の同値関係 ? が与えられたとき,元 a の S における同値類は,a に同値な元全体の集合
{x∈ S | x~ a}
「同値関係」の定義から同値類は S の分割をなす.この分割,同値類たちの集合,を S の ? による商集合 (quotient set) あるいは商空間 (quotient space) と呼び,S/? と表記する.
記法と定義
元 a の同値類は [a] と書き,a と ? によって関係づけられる元全体の集合
[a]={x∈ X| a ~ x}
として定義される.同値関係 R を明示して [a]R とも書かれる.これは a の R-同値類といわれる.
同値関係 R に関する X のすべての同値類からなる集合を X/R と書き,X の R による商集合 (quotient set of X by R, X modulo R) と呼ぶ[5].X から X/R への各元をその同値類に写す全射 x→ [x] は標準射影と呼ばれる.
各同値類の元を(しばしば暗黙に)選ぶと,切断(英語版)と呼ばれる単射が定義される.この切断を s で表せば,各同値類 c に対して [s(c)] = c である.元 s(c) は c の代表元 (representative) と呼ばれる.切断を適切に取って類の任意の元をその類の代表元として選ぶことができる.
ある切断が他の切断よりも「自然」であることがある.この場合,代表元を標準(英語版)代表元と呼ぶ.例えば,合同算術において,整数上の同値関係で,a ? b を a ? b が法と呼ばれる与えられた整数 n の倍数であると定義したものを考える.
各類は n 未満の非負整数を唯一つ含み,これらの整数が標準的な代表元である.類とその代表元は多かれ少なかれ同一視され,例えば a mod n という表記は類を表すことも標準的な代表元(a を n で割った余り)を表すこともある.
(引用終り)
つづく

222:現代数学の系譜 古典ガロア理論を読む
17/07/15 16:01:36.78 uQKi2Au+.net
>>203 つづき
補足
1)時枝記事の可算無限数列のしっぽの同値類では、”標準代表元”は決められない。だから、代表元の選び方は、任意だ。
 参考: URLリンク(ja.wikipedia.org) 同値関係
 ”S の相異なる同値類からはひとつずつ、全部の同値類から代表元を取り出して作った S の部分集合を、集合 S における同値関係 ? の(あるいは商集合 S/? の)完全代表系 (complete system of representatives) と呼ぶ。”
2)時枝記事の実数列の集合 R^Nをベクトル空間と考えて、あるしっぽの同値類をUとして、m+1番目から先が一致するとして*)
 s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈U で
 二つのベクトルの差Δs=s-s’=(s1-s'1,s2-s'2,s3-s'3 ,・・,sm-s'm,0,0,・・)となる。つまり、差を取れば、m+1番目から先は0。
注*)記述を簡素にするため。m番目から先が一致とすると「s(m-1)-s'(m-1)」の表記になり、添え字がみにくくなるため。
おっちゃん、分かる?

223:現代数学の系譜 古典ガロア理論を読む
17/07/15 16:02:48.29 uQKi2Au+.net
>>148
おっちゃん、どうも、スレ主です。
戻る 過去スレ 35 スレリンク(math板:624番)
"3)極限 URLリンク(ja.wikipedia.org)
<コメントしておく>
1.極限は常に考えられる
2.が、極限を考える基礎式で、複数のパターンが考えられ、異なる値になることが、ある
3.分かりやすい例が、下記コーシー分布の”コーシー分布には期待値(平均)は存在しない”の場合だ
  R1とR2とが、極限→∞となるとき、比 R1/R2の値次第で極限値が変わる。(正規分布では減衰が早いので、こうはならなず、一通りに決まる)
4.まとめると、「極限が取れる場合と取れない場合がある」と間違って理解している人がいるが、
  正しくは、「極限は常に考えられるが、発散や振動する場合もあり、二重極限の場合はさらに、値が定まらない場合もある」ということ
おっちゃん、どうですか?
つづく

224:132人目の素数さん
17/07/15 16:03:16.20 PpT0J1Vv.net
>>202
私もやるべきことがあるし、スレ主に付き合うと厄介なことになりかねず、
時間のムダになるから,スレ主には付き合わない。
それじゃ。

225:現代数学の系譜 古典ガロア理論を読む
17/07/15 16:03:23.83 uQKi2Au+.net
>>205 つづき
URLリンク(ja.wikipedia.org)
コーシー分布
(抜粋)
期待値が定義されない理由
確率分布が確率密度関数f(x)を持つ場合、その期待値は以下のように与えられる。
∫{-∞~∞}xf(x)dx=∫{-∞~∞}x/(π(1+x^2)) dx =[1/(2π)log(1+x^2)] {-∞~∞}
=lim R1,R2→∞ 1/(2π)(log(1+(R1)^2)-log(1+(R2)^2)
=lim R1,R2→∞ 1/(2π)(log(1+(R1)^2)/(1+(R2)^2)
(URLの原文を見る方が分かりやすいが)(^^
となるが、この極限はどのような値でも取り、
R1=R2の関係を保って無限大になるときは0に、
R1=2*R2の関係を保って無限大になるときは (log(1/4))/(2π)に
なるなど、2重極限のとしての収束値は存在しない。
このため、期待値は存在しない。
(引用終わり)

226:現代数学の系譜 古典ガロア理論を読む
17/07/15 16:05:47.33 uQKi2Au+.net
>>206
おっちゃん、どうも、スレ主です。
>私もやるべきことがあるし、スレ主に付き合うと厄介なことになりかねず、
>時間のムダになるから,スレ主には付き合わない。
それは残念だね
が、一つの選択肢として理解できる
まあ、お好みの話題に参加しておくれ

227:現代数学の系譜 古典ガロア理論を読む
17/07/15 16:10:29.55 uQKi2Au+.net
>>187-188
>それだけ力がありながら、時枝記事がガセと気付かないのか?(^^
>いまどきの数学は、ある程度知識がないとだめだろうね(^^
まあ、数学基礎論はそこそこ知識がありそうだが
大学レベルの確率論が薄いな~(^^

228:132人目の素数さん
17/07/15 16:16:47.61 YWq1m5g9.net
相変わらず馬鹿丸出しなスレ主

229:現代数学の系譜 古典ガロア理論を読む
17/07/15 16:26:53.83 uQKi2Au+.net
>>191
コテハンがないから、人違いならスマン
「不遇な」と同様、時枝記事が成立するなんて、”気のせい”だろ(^^
”今やるぞ”か
おれは、あまのじゃくでね
人から指図されるのが嫌いなんだ。¥さんと似ているのかもね~(^^
どうぞとしか、いえんがね。ご勝手に、どうぞ(^^
その内、時枝もやるよ
>>9の通りだ。”時々、(時枝”だよ(^^

230:132人目の素数さん
17/07/15 16:31:52.03 OkksdbBE.net
>>204
>可算無限数列のしっぽの同値類では、
>”標準代表元”は決められない。
>だから、代表元の選び方は、任意だ。
代表列を選ぶ(計算可能な)関数を
具体的に構成しろなんて誰もいってないがな
代表列を選ぶ関数が存在すればいい
その存在を保証するのが選択公理

231:132人目の素数さん
17/07/15 16:37:07.82 OkksdbBE.net
>>211
>時枝記事が成立するなんて、”気のせい”だろ(^^
自分が予想できないから
誰にも予想できない筈と思うとか
ただの自惚れだろ(^^
>”今やるぞ”か
>おれは、あまのじゃくでね
「おれは、チキンハートでね」だろ
>人から指図されるのが嫌いなんだ。
人に指図するのは大好きらしいな
¥の父親そっくりだな
同値類の代表列がとれない、というなら選択公理の否定
予測したい列の決定番号が常に最大値になる、というならオカルト
>>1の主張はどちらかね?

232:132人目の素数さん
17/07/15 16:42:14.29 OkksdbBE.net
>>206
>>1は自分より頭悪いとおもった奴を
「人間の盾」につかう悪い癖があるからな
ただはっきりいわせてもらうが
>>1はおっちゃんよりもはるかに頭悪い

233:132人目の素数さん
17/07/15 16:46:25.45 OkksdbBE.net
>>209
>大学レベルの確率論が薄いな~(^^
99/100の算出に、大学レベルの確率論は必要ない
100個の異なる自然数の中から1つ選んで
その自然数が最大でない確率は99/100
小学生でもわかること
逆に
「俺が選ぶ自然数は常に最大」
とかほざ


234:いたら 「おまえはユリ・ゲラーか?」 といわれるのがオチ



235:132人目の素数さん
17/07/15 17:13:51.92 u0zQob/R.net
俺がやったらもう少し確率低くなりそうな気がする

236:132人目の素数さん
17/07/15 17:27:02.62 YWq1m5g9.net
>期待値が収束しない
などと間の抜けたことを得意げに語るおバカさん

237:現代数学の系譜 古典ガロア理論を読む
17/07/15 21:19:31.31 uQKi2Au+.net
>>137
¥さん、どうも。スレ主です。
「独創を阻むもの 哲学不在と没個性 永田 親義著 1994/12」きました(^^
>いや辛かったのは・・、そしてまあ筑波時代ですかね。
>云わば「アレもダメ、コレもダメ、ソレもダメ」みたいな、所謂「飼い犬状態」でした。
ああ、第七章 日本になぜ独創的研究が少ないか 独創を阻む制度 にある通りですね
講座制で、「奴隷のように扱われる日本の若い研究者」(P183)の通りか
まあ、想像できます
でも、ノーベル賞の福井博士の講座の児玉信次郎教授の例のように(P185)、ボスの性格にもよるんですよね
いまは、インターネットなどもあり、ポストも公募が多いと聞きますが
当時は、閉鎖的で、ボス同士のコネで、ポストが決まるというような話もありましたね~
なかなか考えさせる本ですね
追伸
私が、”時枝記事ガセ”で頑張っているのも、日本の風土だと、先生方は、「波風立てたくないから」と、表だって”時枝記事ガセ”と言わないんだ
分かっているのに、表では言わないんだ。もちろん、個別に聞けば、「当然あんなもの成り立つはずない!」というんでしょうけどね(^^
表だっては、誰も本当のことを言わない。それは、良くないだろうと。まあ、敵は多いほど面白いし・・(^^

238:132人目の素数さん
17/07/15 21:42:34.39 OkksdbBE.net
>>218
>>1は正真正銘の狂人だな
自分勝手な妄想を日本の風土まで持ち出して正当化するとか狂気の沙汰

239:132人目の素数さん
17/07/15 22:07:06.23 YWq1m5g9.net
凹られすぎて精神に異常をきたしたようだ
工学崩れの哀れな末路

240:¥氏
17/07/15 22:20:47.33 qAOI4WFY.net
本がもう届いたんですか。迅速ですね。永田親義氏も「酷い現場をかなり多く目の当た
りにされた」のではないかと、恐らくご自身の経験なさった事柄とかも含めてですね。
実は糞父芳雄自身も私に対して「酷い目に散々遭った」という言い方をしてたんですが、
でも現実には『その糞父こそが私に対してもっと酷い事をした』という事です。だから
そういう事をスル人達は『自分自身が悪い事をしてるって事を全く自覚してない』とい
う事でしょうね。
昨今の自民党内部の権力争いとか、まあ小池騒動とか、そして森友・加計学園騒動とか、
そして私が激怒したのはかつてのSTAP騒動とか、そういうモノが全部、正にその「独創
を阻む」っていう問題ですよね。つまり「他人に対して偉そうにスルのが目的」で行動
するとか、或いは「他人から褒めて貰うのが目的」で研究をスルとか。
まあ政治家が(政治そのものを行う、のではなくて)政局に明け暮れるのは、それこそ
「ある程度は仕方がない」のかも知れませんが、でも大学教員が(研究そのものをソッ
チノケにして)『人間関係に明け暮れる』という昨今の状況は、ホンマにいい加減にし
て欲しいですわ。でもそうなる理由は:
★★★『日本人の生きる目的は出世であり、その目的の為に学問を「道具として使う」のが理由』★★★
なんですわ。欧州人はココが「その反対」ですがね。但しこれは『超一流の研究者のみ
にしか当て嵌まらない』ですが。

注意:コレは日本人が「大学を就職予備校と見做す」というのと全く同じ意味ですが。

241:現代数学の系譜 古典ガロア理論を読む
17/07/15 22:29:42.03 uQKi2Au+.net
>>20 戻る
追加資料
URLリンク(www.ailab.t.u-tokyo.ac.jp)
Title: 工学と理学の違い 堀 浩一 (東京大学) コメント返信より 2011
(抜粋)
高校生や大学教養課程の学生の皆さんの中には、工学部に進もうか理学部に進もうかと迷っていらっしゃる方も少なくないことでしょう。 (私自身は、小学生の頃からラジオや無線機を作ってはこわすのを楽しむ無線少年でしたので迷わず工学部に進学したのですが、)私の考える工学と理学の違いを書いてみましょう。ただし、あくまでも私見です。
工学と理学の最大の違いは、学問のめざすところの究極の目標の違いにあります。
ややおおげさな言い方になるかもしれませんが、工学の目標は人類の幸福、理学の目標は真理の探求です。
人工知能システムについての感想の中で、高機能の道具をどのように使っていくかを考えることが重要だ、と書きましたが、さらには、望ましくない使われ方、間違った使われ方が、そもそも不可能になるように設計することも、あわせて考えていく必要があります。
そういう意味では、工学の研究と法学の研究とは共通するところがあって、工学の先生と法学の先生とは、案外、気が合うのです。実際、人工知能の研究においても、法学の先生と工学の先生との共同研究が行われていたりします。逆に、同じ理科系でも、工学の研究者と理学の研究者では意外に気が合わなくて驚くことも少なくありません。
追記 2014年2月22日:
堀浩一: 人工知能研究の方法, 人工知能学会誌, Vol. 28, No. 5, pp. 689-694 (2013).
という解説記事の中では、「文明と文化」、「科学と技術」などという章をもうけて、かなり詳しく書かせていただきました。 残念ながらこの解説記事のcopyrightは人工知能学会が持っているのでこのサイトには載せておりませんが、ざっと次のようなことを書きました。
さらに追記 2014年10月17日:
Theodore von Karmanの`Scientists study the world as it is; engineers create the world that has never been.’
URLリンク(www.facebook.com)
ということばもいいですね。
つづく

242:現代数学の系譜 古典ガロア理論を読む
17/07/15 22:31:00.11 uQKi2Au+.net
>>222 つづき
URLリンク(jsai.ixsq.nii.ac.jp)
PDF 人工知能研究の方法(<特集>一人称研究の勧め) 堀 浩一 人工知能学会誌/Journal of Japanese Society for Artificial Intelligence,28(5),689-694 (2013-09-01) , KJ00008829


243:034 <参考> http://www.ai-gakkai.or.jp/vol28_no5/ ホーム ≫ 学会誌 ≫ 人工知能学会誌 Vol. 28 No. 5 (2013 年9月) 抜粋 特集:「一人称研究の勧め」 特集「一人称研究の勧め」にあたって …………………………………………………………… 諏訪 正樹・堀  浩一 688 PDF https://jsai.ixsq.nii.ac.jp/ej/?action=repository_uri&item_id=8414&file_id=22&file_no=1 人工知能研究の方法 ………………………………………………………………………………………………… 堀  浩一 689 PDF https://jsai.ixsq.nii.ac.jp/ej/?action=repository_uri&item_id=8415&file_id=22&file_no=1 (他資料含め全PDFが下記のAI書庫(アイショコ)サイトにある) https://jsai.ixsq.nii.ac.jp/ej/index.php?active_action=repository_view_main_item_snippet&page_id=13&block_id=23&index_id=445&pn=1&count=75&order=7&lang=japanese AI書庫(アイショコ) (引用終り) 以上です



244:現代数学の系譜 古典ガロア理論を読む
17/07/15 23:01:47.54 uQKi2Au+.net
>>221
¥さん、どうも。スレ主です。
¥さん、昔の言葉でいう「純粋な人」ですね
>コレは日本人が「大学を就職予備校と見做す」というのと全く同じ意味ですが。
確かに、就職を考えて、大学や学部を選ぶというのはありますね
「私と同世代ではおそらく抜きん出た数学者であるジャン=ピエール・セールは、自分もある段階で数学を断念することを考えたと私に語った。」マイケル・アチャ>>135
ってありますからね。ジャン=ピエール・セールでさえ、「おれ、数学でめし食っていけるのか(研究者としてやってけるか)?」ってことなんでしょうね(^^
あと、内在的動機付けと外在的動機付けと、みたいな話ですよね
内在的モチベーション(動機付け):”何の利益や報酬がなくても、学ぶことを喜んでしようとすることである。”と下記に書かれていることですね。学ぶ→研究と置き換えれば・・
外在的モチベーション(動機付け):名誉や利益などの報酬が与えられるとか
勿論、”内在的モチベーション(動機付け)”が良いのですが・・(^^
URLリンク(tsuchy1493.seesaa.net)
2005年10月07日 外在的モチベーションと内在的モチベーション Good News Collection
(抜粋)
人が行動するときのモチベーション(動機付け)として2種類あるだろう。
外在的モチベーションと内在的モチベーションとがそれである。
外在的モチベーション(動機付け)とは、それをすると誉められるとか、名誉や利益などの報酬が与えられるとか、いうのがそれである。
内在的モチベーション(動機付け)とは、それをすること自体が楽しいとかおもしろいとかいうことで御sれをするケースである。それをしないではいられないような内から突き上げてくる動機付けである。
なぜ勉強をするのかという学習の動機付けの場合、外在的な動機付けは、よい点を取りたいとかよい大学に入りたいとか、勉強をして誉められたいとか尊敬されたいというのがこれである。
内在的動機付けは、勉強すること自体を楽しみとできるようなことであろう。好奇心や知的欲求、問題意識そのものに応えて学習するというのは、この内在的モチベーションに応えて学ぶことである。何の利益や報酬がなくても、学ぶことを喜んでしようとすることである。
(引用終り)

245:¥
17/07/16 00:23:51.53 lJ3jPa7S.net
例えばですね
糞父の場合:ポスト獲得の目的で学問分野を選ぶ。だから安易な分野の方がベター。
私の場合は:数学を行うのが目的でポストを利用する。だから縛りが少ないのが良い。
という違いですわ。別の事例で言えば:
★★★『自分(という人間)の為に学問があるのと、そして学問の為に自分があるのの違い。』★★★
と同じであり、まあ「仏教的な世界観と、そしてユダヤ教的な世界観の違い」と同じで
しょうね。
ユダヤ教的な世界観(キリスト教的であるとか、またイスラム世界とも同じ)では自分
の命は「宗教の為に投げ出す」という事をするので。


246:132人目の素数さん
17/07/16 00:32:14.60 26h17CGL.net
クソみたいなレスのために命を投げ出してるゴミがいると聞いて

247:¥
17/07/16 00:38:41.72 lJ3jPa7S.net
追加説明をすると、これは「個人主義と集団主義の違い」に丁度対応する筈で:
URLリンク(www.kinokuniya.co.jp)
が、まあある程度の説明になってるでしょうね。つまり:
★★★『自分にとっての価値判断の基準は「天の上の神」というのと、そして「隣の隣人」の違い』★★★
であり、これが欧州的な宗教観と、そしてアジア的な宗教観の違いかと。


248:132人目の素数さん
17/07/16 01:02:29.16 gZ94C4R9.net
個人主義は産業革命以降じゃないか
日本はまだ中世なんだよ

249:132人目の素数さん
17/07/16 04:33:46.31 TuRg+r5b.net
2chは精神の墓場

250:¥氏
17/07/16 06:27:32.07 lJ3jPa7S.net


251:現代数学の系譜 古典ガロア理論を読む
17/07/16 07:46:51.36 rQee5E1g.net
突然ですが、下記新聞に載っていたが(新聞ではAFP)。ミルザハニさんは過去スレでも紹介したことがある
URLリンク(www.sankei.com)
2017.7.16 女性初のフィールズ賞、M・ミルザハニさん死去 産経
 マリアム・ミルザハニさん(数学者、米スタンフォード大教授)15日の国営イラン通信などの報道によると、米国の病院で死去、40歳。がんが再発し、容体が悪化していた。死去した詳しい日時は不明。2014年に数学のノーベル賞と呼ばれるフィールズ賞を女性として初めて受賞した。イラン人としても初の受賞だった。
 1977年、イランの首都テヘラン生まれ。世界の高校生らが実力を競う国際数学オリンピックで94、95年に連続して金メダルを獲得し「イランの天才少女」と呼ばれた。同国のシャリフ工科大で学士号を取得し、2008年からスタンフォード大教授を務めていた。(テヘラン共同)

252:現代数学の系譜 古典ガロア理論を読む
17/07/16 08:04:55.23 rQee5E1g.net
>>225-227
¥さん、どうも。スレ主です。
>「個人主義と集団主義の違い」に丁度対応する筈で
確かにそれは思いますね
日本:集団主義 VS 西洋:個人主義 のような
それで、ITなどの情報共有技術が進んで、”日本:集団主義”のアドバンテージが少なくなった
つまり、以前は、”西洋:個人主義”はバラバラで、一緒になにかをやる難しさがあったが、IT技術がそれを補っている
日本は、”日本:集団主義”で、「一緒になにかをやる」は出来るが、「何をやるのか?」ってところが弱い
そこが、佐藤スクールなどでは、強烈な個性と能力を持ったリーダーが居たってことでしょうかね?(^^

253:現代数学の系譜 古典ガロア理論を読む
17/07/16 08:28:22.18 rQee5E1g.net
>>225
¥さん、どうも。スレ主です。
>糞父の場合:ポスト獲得の目的で学問分野を選ぶ。だから安易な分野の方がベター。
>私の場合は:数学を行うのが目的でポストを利用する。だから縛りが少ないのが良い。
>という違いですわ。別の事例で言えば:
>★★★『自分(という人間)の為に学問があるのと、そして学問の為に自分があるのの違い。』★★★
”ポスト獲得の目的で学問分野を選ぶ”というのは、”外在的モチベーション(動機付け):名誉や利益などの報酬が与えられる”>>224
”学問の為に自分がある”は、”内在的モチベーション(動機付け)とは、それをすること自体が楽しいとかおもしろいとかいうことでそれをするケースである。それをしないではいられないような内から突き上げてくる動機付け”>>224
ってことかなと思います
確か心理学では、外在的モチベーション(動機付け)と内在的モチベーション(動機付け)と両方、人にはあって、移り変わって行く
そして、外在的モチベーション(動機付け)で始めたことが面白くなって、内在的モチベーション(動機付け)になることも多いとか
ともかく、内在的モチベーション(動機付け)がベストで、これがないと長続きしないし、真の人間としてのパフォーマンス(能力)が出ないとか
で、”内在的モチベーション(動機付け)だけ”というのは、”純粋”だな~と(^^
人は、報酬とかポストも考えるのが普通ですが
ああ、「独創を阻むもの 哲学不在と没個性 永田 親義著 1994/12」第七章 ”主流につきたがる”にある、イギリスの生化学者 ピーター・ミッチェル氏の話がありますね。
生体膜におけるエネルギー変換の機構について化学浸透圧説を提唱したが、異端として評価されなかった。
しかし、最初の論文発表から


254:29年目にノーベル化学賞を受けたと。 しかし、ピーター・ミッチェル氏は、生活費には困らない資産家だった? 「1964年に退職してイギリス南西部の田舎に牧場を買い、めぼしい機器は簡単な遠心分離機だけという研究室を自宅に設けて、助手一人を相手にほそぼそと研究を続けた」とあります。 日本の普通のサラリーマン研究者なら、退職したら、助手一人雇うなどとてもできないし、どうやって生活していくんだと(^^



255:現代数学の系譜 古典ガロア理論を読む
17/07/16 09:04:57.55 rQee5E1g.net
>>233 追加
「独創を阻むもの 哲学不在と没個性 永田 親義著」でなるほどと思ったことに
1)直観の重要性
2)アイデアの重要性
があります。
”1)直観の重要性”は、
第七章 ”広い視野とゆとりに欠ける”のP164からですが
「直観の重要性」は、ポアンカレの言葉
「直観がなければ、若い精神は数学を理解する道に入門することは不可能である。・・・直観なしにでは数学を応用できるようには決してならないだろう」と
日本の数学教育が、どちらかと言えば、”西洋の完成されたと思い込んでいる数学”を学ぶことだけに重点を置いていて、”西洋の完成されたと思い込んでいる数学”が実は未完成だという認識がない
日本の数学教育が、ロジック偏重で、背景の思想、哲学、直観、アイデアを忘れて、「与えられた定義と論証」に明け暮れる
むしろ、直観を殺すことを良しとする教育。おそらく、京大東大名大九大・・以外は、そんな気がしますね・・(^^
まあ、先生の方も、教えることに汲汲として、底辺では「大外れの素人直観を矯正するのが先」的な気分かも知れませんが(^^
で、だから、結局4年たっても、ポアンカレの言葉の通り
さらに、ポアンカレの言葉「もし直観が学生にとって有用だとすれば、独創的な科学者にとっても、なおさらのこと有用なのである」と(『科学の価値』)
”2)アイデアの重要性”は、P167からありますね
昔どこかで読んだのが、グロタン先生が日本の若手で日本では優秀と言われる人が送った論文を、一瞥して「なんのアイデアもない」と、ゴミ箱へ直行だったと。
まあ、日本的には数学的に綺麗な結果を出した論文だったのかも知れません。詳細は書かれていなかったから分かりません
が、グロタン先生が重視していたのは、アイデア(彼のオリジナルの)だったことは明白でしょうね。(^^
あと、ノーベル賞 福井研で、「論文を読みすぎるな」と。「重要な古典的文献をしっかり読め」と。(どこに書いてあったか見つからないので、箇所は後で)
まあ、「論文を読みすぎるな」というのは、「自分の頭で考えることを軽視するな」ってことでもあり
高木先生の「近世数学史談」の最後に、”第一次世界大戦で西洋の文献が来なくなったので、自分で考えたら類体論が解けた”みたいにありましたが、一脈通じるところですよね

256:¥氏
17/07/16 09:23:42.34 lJ3jPa7S.net
芳雄の場合は唯単に「周囲の他人から喝采されたいだけ」であり、従って『学問そのもの
には興味なんて無い人』ですわ。だから:
1.学問を利用して、自分が偉そうにしたいだけ。
2.周囲の他人(例えば妻や息子)を自分の管理下に置いて支配したいだけ。
ですわ。
そやし単なる『年功序列の殿様商売しかしない糞野郎』ですわ。


257:現代数学の系譜 古典ガロア理論を読む
17/07/16 09:42:03.84 rQee5E1g.net
>>221 追加
>そして私が激怒したのはかつてのSTAP騒動とか、そういうモノが全部、正にその「独創
>を阻む」っていう問題ですよね。つまり「他人に対して偉そうにスルのが目的」で行動
>するとか、或いは「他人から褒めて貰うのが目的」で研究をスルとか。
外しているかも知れませんが
1)私の周りに、笹井 芳樹先生を良く知る人がいて、笹井 芳樹先生を失ったのは日本にとって大きな損失だと(世俗的ですが、ノーベル賞の有力候補でもあったそうです)
2)本来、理研が組織として、笹井 芳樹先生を守る方向に動くべきところ、理研が保身からか、責任追及側になってしまった。これが自殺の遠因だったかも
3)まあ、「”STAP”を早く広報したい」とあせって、検証不十分な発表を。まあ、”STAP”の研究自身も生煮えだったのかも
4)あと、「独創を阻むもの 哲学不在と没個性 永田 親義著 1994/12」にも、論文の粗製濫造というか間違い論文の話がありましたね。これも記載箇所が出てきませんが。
 それで、当時話題になったのが、論文ねつ造が結構ある的な話。
 さすがに数学では、それは少ないと思いますが、「時枝記事」のような明白な間違い記事を、だれも批判しない日本文化もなんだかな~と思います(^^
URLリンク(ja.wikipedia.org)
(抜粋)
笹井 芳樹(1962年 - 2014年)は、日本の発生学者、医学者。京都大学博士(医学)[4])。京都大学再生医科学研究所教授、理化学研究所発生・再生科学総合研究センター (CDB) グループディレクター、同 副センター長を歴任した[1]。
2014年に発表・撤回されたSTAP論文[12]により様々な責任が追及される中[13][14][15][9]、2014年8月5日に縊死(首吊りによる自殺)。その死は国内外に衝撃を与えた[16][17][18]。
URLリンク(ja.wikipedia.org)
刺激惹起性多能性獲得細胞
URLリンク(ja.wikipedia.org)
調査報告 STAP細胞 不正の深層 『NHKスペシャル』

258:132人目の素数さん
17/07/16 09:50:13.48 Uc1R6So0.net
>>234
>グロタン先生が日本の若手で日本では優秀と言われる人が送った論文を、
>一瞥して「なんのアイデアもない」と、ゴミ箱へ直行だったと。
また文系馬鹿が過去の権威を盲信してるね
ガウスがノルウェーの若手アーベルの5次方程式の非可解性の論文を
一瞥して「なんのアイデアもない」と、ゴミ箱にほうりこんだという黒歴史
を知らんのか
権威はブチ壊される対象でしかない

259:132人目の素数さん
17/07/16 09:53:44.13 Uc1R6So0.net
¥も愚痴ってる相手が、自分の親父と同類の
権力盲信馬鹿だということに気づかないとは
つくづく人を見る目のない奴だな

260:現代数学の系譜 古典ガロア理論を読む
17/07/16 11:00:44.01 rQee5E1g.net
>>234 補足
直観とアイデアの重要性は
過去スレ24で紹介した渕野昌先生(下記)と
マイケル・アチャ >>135
「数学研究とは証明を提示していくころだと考えるのは間違っている。実際、数学研究の真に創造的な部分はすべて証明段階より重要だと言える。
 ”段階”というメタファーを使うならば、あなたはアイデアを持つことから始め、筋書きを広げ、問答を書き、芝居がかった説明を用意しなければならない。実際にできあがったものが、アイデアを実行に移した”証明”と考えられる」
「数学ではアイデアと概念が最初にあって、次に疑問や問題が来る。この段階で解答を求める研究が始められ、解法や戦略を探すのだ。」と
過去スレ24 スレリンク(math板:457番)
457 現代数学の系譜11 ガロア理論を読む 2016/10/16(日)
(抜粋)
あなたのまったく逆を渕野先生が書いている。>>361
”厳密性を数学と取りちがえるという勘違い”
URLリンク(www.amazon.co.jp)
数とは何かそして何であるべきか デデキント 訳解説 渕野昌 筑摩書房 2013
数学的直観と数学の基礎付け 訳者による解説とあとがき P314
(抜粋)
数学の基礎付けの研究は,数学が厳密でありさえすればよい, という価値観を確立しようとして
いるものではない.これは自明のことのようにも思える
が,厳密性を数学と取りちがえるという勘違いは,たとえ
ば数学教育などで蔓延している可能性もあるので,ここに
明言しておく必要があるように思える.
多くの数学の研究者にとっては,数学は,記号列として
記述された「死んだ」数学ではなく,思考のプロセスとし
ての脳髄の生理現象そのものであろうしたがって,数学
はその意味での実存として数学者の生の隣り合わせにある
もの,と意識されることになるだろうそのような「生きた」
「実存としての」(existentialな)数学で問題になるの
は,アイデアの飛翔をうながす(可能性を持つ)数学的直観」
とよばれるもので,これは, ときには,意識的に厳密
には間違っている議論すら含んでいたり,寓話的であった
りすることですらあるような,かなり得体の知れないもの
である.
(引用終り)

261:¥氏
17/07/16 11:06:01.64 lJ3jPa7S.net
笹井は(確かにちゃんとした業績はあるが、ソレはさて置き)ズルいわ:
★★★『STAPでは初期化した幹細胞には「なってる保証がない不完全なもの」と知ってて投稿した』★★★
というのが私の解釈ですわ。(TCR再構成のチェックを意図的にしなかった。)
まあ細部はいいとして、結果的にあの論文は『不完全というかミステイク』であり:
1.小保方嬢は「無能なので」、その不完全さが理解出来ない。
2.笹井は「ダメだと自分で知ってて」、それでも投稿した。
だから小保方嬢は唯単に「頭が悪く無能なだけ」だが、でも、笹井は『知ってて意図的
にやった』から、従って小保方嬢から見ればミステイクだろうが、でも笹井からすれば
あれは捏造だろうね。
だから悪質だって怒ってるんですわ。

注意:要するにあれは「ESとのコンタミ」なんだが、では『その理由は何か』っていう
事柄が問題になってる。まあ世間から評価が欲しかったから必死だったんだろう。笹井
の遺族からも全財産を没収して、それで理研に弁償するべきだろう。悪質だわさ。

262:132人目の素数さん
17/07/16 11:13:53.70 YZ1TSUBD.net
>確率の専門家さんに平伏していた
皆「コイツ何言ってんだろ?」ってポカーンとしてただけなのに、「平伏している」
などと勘違いした挙句に、「確率の専門家が言うのだから間違い無い」と妄信。
まさに権力妄信馬鹿

263:現代数学の系譜 古典ガロア理論を読む
17/07/16 11:14:02.59 rQee5E1g.net
>>235
¥さん、どうも。スレ主です。
芳雄さんの場合は、個人的には全く存じ上げないので、なんとも申し上げられないのですが
まあ、そのお話ですと、いわゆる「俗人」(下記”世俗の名利などにとらわれている人”)という部類でしょうかね
その反動で、”純粋”内的動機付けだけというか、重視というか、そっちの方なのでしょうか
普通人は、まあ半々くらいで、外的動機付け50%内的動機付け50%か、あるいは平均値は少し外的動機付けに寄っているかも知れませんが
URLリンク(kotobank.jp)
俗人 ゾクジン デジタル大辞泉の解説 コトバンク
(抜粋)
1 世俗の名利などにとらわれている人。風流を解さない教養の低い人。「俗人には理解できない趣味」
2 僧に対して、世間一般の人


264:。世俗の人。 (引用終り)



265:132人目の素数さん
17/07/16 11:34:40.06 jAWHcyxA.net
工学バカは、単に権力を妄信するんじゃなくて、自分にとって都合がいい
「エラいひと」の意見を、自分好みに解釈して悦に入る、これ。
数学には証明しかないんだが、論理を追えないから、「お話」に縋るしかないのがスレ主。

266:¥氏
17/07/16 12:05:49.88 lJ3jPa7S.net
だからですね:
★★★『芳雄が自分で幾ら近視眼的だろうと打算的だろうと、ソレは
       「芳雄の勝手」であり、好きな様にしたらいい。音楽の趣味と同じ。』★★★
ですわ。どうぞ自分で好きな様に『教授昇進を目的にして人生を送れ』って事ですわ。
なので問題にしてんのは『そういう安っぽい価値観を息子に押し付けるな!』って言って
るだけです。でも芳雄は:
1.それを私に押し付けて数学科進学を砕いた。⇒なので私は学歴を失った。
2.常に安全を取ってリスクを回避し、冒険をしない。⇒この考え方や行動を強制。
3.恐喝とか脅しで屈服させた。まあ「巨人の星」みたいな世界ですわ。
4.しかもそれを『研究者としての基本的態度』と主張した。
という様な事柄ですわ。
なので私は思いっきりの復讐として『芳雄の願いを計画的に全部粉砕する』という風に
してるだけです。あんな馬鹿な事をして、それでも「無傷で死ねる」ってのは無理です。

追加:芳雄みたいなあんな奴が居るから、この国のサイエンスがダメになるんです。

267:¥氏
17/07/16 12:16:21.55 lJ3jPa7S.net
芳雄だけは絶対に許さないので。罰に見合う分だけの傷をちゃんと負って、そして充分
に苦汁を舐めてからでなければ死なせないです。なので電車に轢かれて足を骨ごと切断
し、カタワになれば「数学科を出てない数学者の苦悩」がちゃんと理解出来る筈なので。
これはそもそも:
★★★『満州の引揚者である芳雄本人が、その毛並みの悪さから痛め付けられた京大理学部時代』★★★
と同じですわ。なので芳雄は腕とか足を骨ごと切断するべき。
他人を自分の好みに合う様に変形するなって事を言ってるだけだす。もしそうしたけれ
ば、息子は「大阪駅前の阪神デパートで金払って買うべき」なんです。そうすれば気に
要らない買い物は何時もの様に『怒鳴って罵倒してクレームする』といいんです。顰蹙
を買う事はあっても、デパートならばアホな客にもちゃんと対応するので。


268:¥氏
17/07/16 12:18:34.95 lJ3jPa7S.net
訂正:
気に要らない ⇒ 気に入らない


269:132人目の素数さん
17/07/16 12:25:07.20 26h17CGL.net
>なので私は学歴を失った。
学歴がないとなにもできない人なのですね

270:¥氏
17/07/16 12:38:16.77 lJ3jPa7S.net
なのでそれを逆手に取って「馬鹿板を焼いてる」んです。


271:¥氏
17/07/16 12:43:28.36 lJ3jPa7S.net
しかも『大学の勤務を辞めて数学科学部に行き直すゾ!』っていう方法論で芳雄を脅す
材料にも利用できます。とにかくああいう輩には圧力を掛けて砕いてしまう必要がある。



次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch