不等式への招待 第8章at MATH
不等式への招待 第8章 - 暇つぶし2ch977:132人目の素数さん
17/09/11 02:33:18.51 Ls/z+whG.net
[第3章 843、845] より、
a≧b≧0,c≧d≧0のとき、
√(a^2+ad+d^2)+√(b^2+bc+c^2)≧√(a^2+ac+c^2)+√(b^2+bd+d^2)

978:132人目の素数さん
17/09/11 07:41:49.10 Ls/z+whG.net
>>951 の類題
[第1章 68、71] より、
実数x,y,zに対して √(x^2+y^2-xy)+√(y^2+z^2-yz) ≧ √(z^2+x^2+zx)

979:132人目の素数さん
17/09/11 08:02:10.25 Ls/z+whG.net
>>951は、根号内が負にならないように x, y, z >0 (≧0) とすべきだよな。

980:389
17/09/11 09:18:52.80 Bpls46N5.net
>>389の不等式について
元の問題(>>515)の2は、その対偶に当たる
∃k, ∀(x,y)>0, (x^v)(y^w)≦k((x^p)(y^q)+(x^r)(y^s)+(x^t)(y^u) ⇒ (Dが△ABCの内部および周上)
(>>389の←)
を示せばよい?
近大発表の解答を探したが、既刊の2冊には載っていなかった
『21世紀無差別級数学バトル』
URLリンク(www.amazon.co.jp)
『白熱!無差別級数学バトル』
URLリンク(www.amazon.co.jp)

981:132人目の素数さん
17/09/11 10:40:19.10 Ls/z+whG.net
>>954
2009年の問題だから、数蝉2010年8月号P.60
近畿大学『数学コンテスト』/12年の歩みを振り返って/大野泰生+佐久間一浩


982: https://www.nippyo.co.jp/shop/magazine/5364.html に解説があるやもしれぬ… ('A`)



983:132人目の素数さん
17/09/11 14:27:23.93 lLjA+cjN.net
>>952
3直線 OA、OB、OC を
 ∠AOB = ∠BOC = ∠AOC/2 = π/3,
となるようにとる。
OA上、座標xの点をX,
OB上、座標yの点をY,
OC上、座標zの点をZ とする。
このとき
 XY = √(xx-xy+yy),
 YZ = √(yy-yz+zz),
 ZX = √(zz+zx+xx),
 XY + YZ ≧ ZX,
等号成立条件は y(x+z)=xz.{x=z=2y も含む.}
>>953 ?

984:132人目の素数さん
17/09/11 14:33:07.83 Ls/z+whG.net
>>956
問題文の x,y,z は実数だけど、実数でも成り立つのかな?

985:132人目の素数さん
17/09/11 16:04:03.38 CvOz8PAv.net
>>953
>>957
非負でなくてはならない条件はつかってないと思うけどどういうこと?

986:132人目の素数さん
17/09/11 16:19:08.50 Ls/z+whG.net
う~ん、私が理解できていないだけみたい。
>>956
> OA上、座標xの点をX,
この意味が分かりません。

987:132人目の素数さん
17/09/11 16:28:39.37 Ls/z+whG.net
>>42
> 〔問題216〕
> 実数a~dについて
> (aa+ac+cc) (bb+bd+dd)≧(3/4) (ab+bc+cd)^2,
> (aa+ac+cc) (bb+bd+dd)≧(3/4) (ad-bc)^2,
上側
4(a^2 + ac + c^2)(b^2 + bd + d^2) - 3(ab + bc + cd)^2
= (ab - bc + cd + 2da)^2
≧ 0
下側は、Wolfram 先生に以下の2通りを処理させても、ずっと 『COMPUTING』 のまま結果を出さない。
factor 4(a^2 + ac + c^2)(b^2 + bd + d^2) - 3(ad - bc)^2
expand 4(a^2 + ac + c^2)(b^2 + bd + d^2) - 3(ad - bc)^2
つまり因数分解できないんだろうけど、長い式は展開してくれないのかな?
平方和になるのかな?

988:132人目の素数さん
17/09/11 16:38:45.88 Ls/z+whG.net
手計算で展開してから、Wolfram先生に因数分解してもらった。
4(a^2 + ac + c^2)(b^2 + bd + d^2) - 3(ad - bc)^2
= 4(a^2b^2 + b^2c^2 + c^2d^2 + d^2a^2 + a^2bd + ab^2c + acd^2 + bc^2d + abcd) - 3(a^2d^2 - 2abcd + b^2c^2)
= 4a^2b^2 + b^2c^2 + 4c^2d^2 + d^2a^2 + 4a^2bd + 4ab^2c + 4acd^2 + 4bc^2d + 10abcd
= (2ab+ad+bc+2cd)^2
≧0

989:132人目の素数さん
2017/09/


990:11(月) 17:20:43.44 ID:IDWqxmZH.net



991:132人目の素数さん
17/09/11 17:22:26.50 lLjA+cjN.net
>>956
直線OAをx軸とし、OAの向きを正とします。
もちろん、x軸,y軸,z軸は直交しません(斜交軸)

>>960-961
>>47-48 から
(aa+ac+cc)(bb+bd+dd)=(ad-bc)^2 +(ad-bc)(ab+bc+cd)+(ab+bc+cd)^2,
これと
xx+xy+yy ≧(3/4)xx,(3/4)yy
から出ますけど...

992:132人目の素数さん
17/09/11 17:52:18.68 lLjA+cjN.net
>>952
では図に頼らず代数的に...
LHS^2 - RHS^2 = 2√(xx-xy+yy)√(yy-yz+zz)+(2yy-t)
={4(xx-xy+yy)(yy-yz+zz)-(2yy-t)^2}/{2√(xx-xy+yy)√(yy-yz+zz)-2yy+t}
= 3DD /{2√(xx-xy+yy)√(yy-yz+zz)-2yy+t}
≧ 0,
ここに、t = xy+yz+zx,
等号成立条件は D = xy+yz-zx = 0,

993:132人目の素数さん
17/09/11 18:32:41.88 Ls/z+whG.net
>>962-963
ありがとうございます! 今から考えてみます。

>>963
じゃあ xx+xy+yy ≧3xy だから、次式も成り立ちますね。
(aa+ac+cc) (bb+bd+dd)≧ 3(ad-bc)(ab+bc+cd)

994:132人目の素数さん
17/09/11 21:29:10.93 Ls/z+whG.net
>>956
たとえば x>0, y<0 のときに、
XY = √(xx-xy+yy) じゃなく
XY = √(xx+xy+yy) になりませんか?

995:132人目の素数さん
17/09/11 21:30:28.09 Ls/z+whG.net
いやいやいや、>>966は忘れてくだされ。負のときは角度が変わるから、大丈夫なんだね。

996:132人目の素数さん
17/09/12 02:14:22.13 YsdDbYfo.net
>>389 >>954
⇒ は簡単なんでつが… >>568
三角形を回して考えるのかな。
p’,r’,t’< v’ ならば x→∞
p’,r’,t’ > v’ ならば x→0
q’,s’,u’< w’ ならば y→∞
q’,s’,u’ > w’ ならば y→0
として反例を探す。

997:132人目の素数さん
17/09/12 03:54:04.96 YsdDbYfo.net
>>947
AM-GM で
(aa+2bb)(bb+2cc)(cc+2aa)-(aa+ab+bb)(bb+bc+cc)(cc+ca+aa)
={(aabb+c^4)/2 +2ccaa}(a-b)^2 +{(bbcc+a^4)/2 +2aabb}(b-c)^2 +{(ccaa+b^4)/2 +2bbcc}(c-a)^2 + 2abc⊿
≧ 2ccaa(a-b)^2 + 2aabb(b-c)^2 + 2bbcc(c-a)^2 +2abc⊿
= 2abc{(ca/b)(a-b)^2 +(ab/c)(b-c)^2 +(bc/a)(c-a)^2 + ⊿}
≧ 0,
ここに、⊿ =(a-b)(b-c)(c-a),
〔補題〕
-1/2 < ⊿/{(ca/b)(a-b)^2 +(ab/c)(b-c)^2 +(bc/a)(c-a)^2}≦(7-3√3)/22 = 0.0819930717
左側は(a,b,c)=(a,1,1/a)で a→∞ のとき近づく。
さて、どうやって示すんでしょうね...

998:132人目の素数さん
17/09/12 09:02:09.48 bjO3mpkI.net
和積版並べ替え不等式で一発

999:132人目の素数さん
17/09/12 14:13:31.04 YsdDbYfo.net
>>969
AM-GMで
(aabb+c^4)/2(a-b)^2 +(bbcc+a^4)/2(b-c)^2 +(ccaa+b^4)/2(c-a)^2 + abc⊿
≧ abc{c(a-b)^2 + a(b-c)^2 + b(c-a)^2 + ⊿}
= 2(abb+bcc+caa - 3abc)
≧ 0,     [第4章.626]
を使うと、
(aa+2bb)(bb+2cc)(cc+2aa)-(aa+ab+bb)(bb+bc+cc)(cc+ca+aa)
≧ abc{2(ca/b)(a-b)^2 + 2(ab/c)(b-c)^2 + 2(bc/a)(c-a)^2 + ⊿},

1000:132人目の素数さん
17/09/12 20:07:31.54 bmf0+g5o.net
【問題】 (出典 2016 TOT)
a, b, c >0 に対して、a + (ab)^(1/2) + (abc)^(1/3) ≦ (4/3)*(a+b+c)
TOTって何ぞや?
       ___ 
彡     /  ≧ \    彡 ビュゥ……
  彡   |:::  \ ./ |  彡
      |:::: (● (●|    書店で立ち読み中に
      ヽ::::......ワ...ノ    見かけた問題でござる
        人つゝ 人,,         
      Yノ人 ノ ノノゞ⌒~ゞ    
    .  ノ /ミ|\、    ノノ ( 彡
     `⌒  .U~U`ヾ    丿
             ⌒~⌒

1001:132人目の素数さん
17/09/12 20:10:11.31 bmf0+g5o.net
【おまけ】 難易度:鼻くそ
a,b,c,d,e>0 に対して、a^2 + b^2 + c^2 + d^2 + e^2 ≧ (a+b+c+d)e

1002:132人目の素数さん
17/09/12 23:02:36.39 bmf0+g5o.net
>>972 を改造しようとして、λの最小値を出そうとしたが、挫折したでござる。
a, b, c, d >0 に対して、a + (ab)^(1/2) + (abc)^(1/3) + (abcd)^(1/4) ≦ λ*(a+b+c+d)

1003:132人目の素数さん
17/09/12 23:20:00.20 N0+9SYTs.net
>>972
Tournament of the town
a/12 + b/3 + 4c/3 >= (abc)^(1/2)
a/4 + b >= (ab)^(1/2)
>>973
L - R = (a-e/2)^2 + …

1004:132人目の素数さん
17/09/12 23:30:54.46 bmf0+g5o.net
>>972
2文字なら簡単に作れるのでおじゃるが…
a, b >0 に対して、a + (ab)^(1/2) ≦ {(1+√2)/2}*(a+b)

1005:132人目の素数さん
17/09/13 03:07:54.73 i1anpb+k.net
[疑問]-----------------------------------------------
a, b, c >0 に対して、
M(a,b,c) ≧ (a^2+ab+b^2)(b^2+bc+c^2)(c^2+ca+a^2) ≧ m(a,b,c)
-----------------------------------------------------
AM-GMで m(a,b,c) = 27(abc)^2 を得るけど、もっとキツく締め上げたいのでござる。
L = a^2b + b^2c + c^2a
R = ab^2 + bc^2 + ca^2
(a^2+ab+b^2)(b^2+bc+c^2)(c^2+ca+a^2)
= L^2 + LR + R^2
= (s^2)(t^2) - (s^3)u - t^3

 " ;ヾ ; ;";ヾ; ;"/" ; ;ヾ ;ヾ;ヾ ; ;ヾ ; ; ヾ ;ゞ  " ;ヾ ; ;";ヾゝゝ" ;ヾゞ           ヽ            /
,." ;ヾ ; ;";ヾ; ;"/" ; ;ヾ ;ヾ;ヾ ; ;ヾ ; ; ヾ ;ゞ  " ;ヾ ; ;";ヾゝゝ" ;ヾ ; ; ヾ ;ゞ;        \        /
 ゞヾ ; ;" ; ; ;; ;"i


1006:iiiii;;;;;::::: :)_/ヽ,.ゞ:,,ヾゞヾゞ__;::/        `      `        `   ー ─ ' `    ゞヾゞ;\\iiiiii;;;;::::: :|;:/ヾ; ;ゞ "ゝゞ ; ;`   `      ,|i;iiiiiii;;;;;;::: :| `    `         `     `      ` `   `         ,|iiii;iiii;;;;:;_ _: :| ___  秋の夜長に不等式    `        `        `,    `    |iiiiiii;;;;;;((,,,):::|/  ≧ \                    ヾ从//"     `   |iiiiiiii;;;;ii;;;;;;;;::|::::: (● (● |           `  ゙  `    ヾ'./"          |iiiiii;iii;;;;i;;:: ::::|ヽ::::......ワ...ノ                 ○     .||.       ,     `   |iii;;iiiii;::;:;;;;::::::| ( つ且 ~      `              ○○   | |   , , .,.. ,..M|M|iMii;;ii:i;;i:i;:; ゝ つつ.,.. ,...... ,.... ,,,.,.. ,.... ,,,.,.. ,..,,,,.,...,..,.,| ̄ ̄|,.,..(  ).. ,,,..,,.. ,.... ,,,.,...,.. .. ,.... ,,,.,.. ,.... ,,,



1007:132人目の素数さん
17/09/13 06:13:10.00 HyiuMNX2.net
耳栓をしたら世界が変わってワロタ

1008:132人目の素数さん
17/09/13 07:02:09.13 jekxCsX+.net
>>974
 a = a,
 √ab ≦{1/(2√p)}(a+pb),
(abc)^(1/3)≦{1/[3(pq)^(1/3)]}(a+pb+qc),
(abcd)^(1/4)≦{1/[4(pqr)^(1/4)]}(a+pb+qc+rd),
ここに、
p = 3.37617521979458
q = 9.55342152751350
r = 32.2851876698453
辺々たすと
λ = 1.42084438540961

1009:132人目の素数さん
17/09/13 10:07:15.32 i1anpb+k.net
>>975
顔文字(ToT)の正体は Tournament of the town なのか…
幾つかの国でやっているようだから、出題年度だけでは見つけるのは大変でござるな。
wiki (Tournament of the town)
URLリンク(en.wikipedia.org)
AoPS
URLリンク(artofproblemsolving.com)
加奈陀
URLリンク(www.math.toronto.edu)
独逸
URLリンク(www.math.uni-hamburg.de)
仏蘭西
URLリンク(www.tournoidesvilles.fr)
以色列
URLリンク(www.taharut.org)
イスラエルは読めぬ…。右寄せになっているが右から左に書くのか?

1010:132人目の素数さん
17/09/13 10:15:37.91 i1anpb+k.net
>>979
3変数でよかったのか…。次のように6変数でやっていますた。
a = a
√ab = √{(pa)(b/p)} ≦ {(pa)+(b/p)}/2
(abc)^(1/3) = {(qa)(rb)(c/pq))}^(1/3) ≦ {(qa)+(rb)+(c/pq)}/3
(abcd)^(1/4) = {(sa)(tb)(uc)(d/stu)}^(1/4) ≦ {(sa)+(tb)+(uc)+(d/stu)}/4
1 + p/2 + q/3 + s/4 = 1/2p + 3/r + t/4 = 1/3pq + u/4 = 1/4stu
pa = b/p
qa = rb = c/pq
sa = tb = uc = d/stu

1011:132人目の素数さん
17/09/13 10:36:59.57 i1anpb+k.net
>>4
埋蔵地のリンクが切れているところが結構あるので修正中。
>>1の過去ログ・まとめサイト、>>2の和書以外は、まとめサイト参照でいいかもね。

1012:132人目の素数さん
17/09/13 10:49:00.52 i1anpb+k.net
>>165
[不等式 第7章 241]
> 0<x<y<π/2の時
> (tanx/x)^x+(siny/y)^y<(tany/y)^y+(sinx/x)^x
> を示せ
これも未解決ですな

1013:132人目の素数さん
17/09/13 10:49:48.18 i1anpb+k.net
>>469
> >>388
> >>456
> 相当な量の改良問題があった
>
> for reals
> [1] (a^2+1)(b^2+1)(c^2+1) >= (1+a+b)(1+b+c)(1+c+a)
> [2] ((a^2+3)(b^2+3)(c^2+3))^2 >= 512(a+b)(b+c)(c+a)
>
> for nonnegarives
> [3] (a^2+2)(b^2+2)(c^2+2) >= 3(a+b+c)^2+(abc-1)^2
> [4] (x^2+2)(y^2+2)(z^2+2) >= 4(x^2+y^2+z^2)+5(xy+yz+zx)+(xyz-1)^2
> [5] (a^2+2)(b^2+2)(c^2+2) >= 4(a^2+b^2+c^2)+5(ab+bc+ca)+(abc(a-1)^2(b-1)^2(c-1)^2)^(1/3)
>
> AOPS
> [1], [2] : c6h588096p3481394
> [3] : c6h4830p15309
> [4], [5] : c6h581954p3438879
>
> 他にもいろいろ
この辺に改造できそうなネタがたくさん埋もれていそう。

1014:132人目の素数さん
17/09/13 11:15:48.43 i1anpb+k.net
数研通信に SMV-Theorem についての解説があった。
数検通信
URLリンク(www.chart.co.jp)
89号、対称的な不等式の証明方法について、柳田五夫 ← コレ
他に不等式絡みの記事
80号、3次の同次対称式P(a,b,c)の不等式について、柳田五夫
76号、絶対値記号を含む不等式について、柳田五夫
75号、不等式の証明に役立つ不等式と接線の利用について、柳田五夫
66号、1/a + 1/b + 1/c + 1/d + 1/e (a,b,c,d,e∈N)の最大値について、柳田五夫
60号、接線を利用した台形の面積で,ある不等式を証明する、柳田五夫
08号、ある不等式の証明について、柳田五夫
89号、数学的帰納法とベルヌーイの不等式、大谷昌範
85号、モローの不等式の証明、藤岡優太
80号、n数の相加・相乗平均の関係の証明、西元教善
76号、ベクトルの三角不等式の活用、岡本雅史
66号、チェバ・メネラウスの定理から導く三角形の不等式、中村公一
60号、巡回不等式特集、大塚秀幸
50号、不等式をつくる、仁平政一
42号、いままで出会ったことのない「ある不等式」について、仁平政一
49号、相加・相乗平均の不等式を産み出す根源的不等式について 、西元教善
47号、不等式の証明の統一的方法、仁平政一
20号、チェビシェフの不等式について、遠藤一成、中島政彦

1015:132人目の素数さん
17/09/13 11:22:52.28 i1anpb+k.net
新スレを建てたでござる。
今後とも御指導お願いしますでござる。
不等式への招待 第9章
スレリンク(math板)

1016:132人目の素数さん
17/09/13 12:57:54.60 i1anpb+k.net
>>979
p, q, r の値は具体的にどう表されるのですか? 解くのは大変そうですが…

1017:132人目の素数さん
17/09/13 14:14:15.00 HyiuMNX2.net
耳栓をしたら世界が変わってワロタ

1018:132人目の素数さん
17/09/13 16:12:00.85 i1anpb+k.net
>>979
1 + 1/(2√p) + 1/[3(pq)^(1/3)] + 1/[4(pqr)^(1/4)]
= p/(2√p) + p/[3(pq)^(1/3)] + p/[4(pqr)^(1/4)]
= q/[3(pq)^(1/3)] + q/[4(pqr)^(1/4)]
= r/[4(pqr)^(1/4)]
をみたす正の数 p, q, r を求めればいいんだけど、うまく出せない…
p = 3.37617521979458
q = 9.55342152751350
r = 32.2851876698453
この値はどうやったら出せるんですか?

1019:132人目の素数さん
17/09/13 17:42:14.45 jekxCsX+.net
>>981
>>974 の等号が a=pb=qc=rd で成立するならば、
このとき >>981 の3式も等号が成立するはず。
これを考慮すると、
a=A、pb=B、qc=C、rd=D とおくとき
 √AB ≦(A+B)/2,
(ABC)^(1/3)≦(A+B+C)/3,
(ABCD)^(1/4)≦(A+B+C+D)/4,
の定数倍になっている。
>>987-989
それは拙者も知りとうござる。
ところで、
λ_1 = 1.0
λ_2 =(1+√2)/2 = 1.20710678118655  >>976
λ_3 = 4/3 = 1.33333333333333     >>972
λ_4 = 1.42084438540961         >>979
単調に増加する....
lim_{n→∞}λ_n = ?

1020:132人目の素数さん
17/09/13 19:04:41.16 i1anpb+k.net
>>977
とりあえず少し進展したのでパピコ。 Caushyの拡張より、
(a^2+ab+b^2)(b^2+bc+c^2)(c^2+ca+a^2)
= (ab+b^2+a^2)(b^2+bc+c^2)(a^2+c^2+ca)
≧ (ab+bc+ca)^3
= t^3
AM-GMで 27(abc)^2 = 27u^2 とした�


1021:謔閧焜}シになった。  m(a,b,c) = (ab+bc+ca)^3 ≧ 27(abc)^2 が、以下のように分割すると、非負値の和ばかりで、ずいぶんとゆるゆるなうんちでござる。 (a^2+ab+b^2)(b^2+bc+c^2)(c^2+ca+a^2) - t^3 = (s^2)(t^2) - (s^3)u - 2(t^3) = (t^2-3su)F_0 + 2suF_0 + (u^2)F_{-2} + u(st-9u) ≧ 0 まだまだ厳しくできるはず! ちなみに M(a,b,c) の方は、どこから手をつけてよいか見当がつかぬ…。       /⌒ヽ   /⌒  ・ > ぬ~ん…   E ̄U) ε |    E ̄∩) ・ > ゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛



1022:132人目の素数さん
17/09/13 19:05:36.22 i1anpb+k.net
>>990
では、どうやって具体的な p, q, r の近似値を出したのでござるか?

1023:132人目の素数さん
17/09/13 19:11:18.22 i1anpb+k.net
どうでもいいが、新スレ3のAAの元ネタは、「よろしい ならば戦争だ」
ニコ動で演説は見たが、元のアニメを見たことがなくてピンとこない。

1024:132人目の素数さん
17/09/13 19:30:18.62 jekxCsX+.net
>>984
[1]
a=b=c=1 のとき?

[2]
(aa+3)(bb+3)=(ab-1)^2 +(3aa+2ab+3bb)+ 8
=(ab-1)^2 + (a-b)^2 + 2(a+b)^2 + 8
=(ab-1)^2 + (a-b)^2 + 2(a+b-2)^2 +8(a+b),

1025:132人目の素数さん
17/09/13 19:36:01.04 i1anpb+k.net
>>994
たしかに (1) は成り立ちませんね。
AoPSの掲示板が元ネタだから、仕方ないでござる。

1026:132人目の素数さん
17/09/13 19:56:41.83 S+/ABgCb.net
>>994
for positives
[1] (a^2+2)(b^2+2)(c^2+2) >= (1+a+b)(1+b+c)(1+c+a)
だった
なんで全然違う問題を掲載したんだろう
>>995
それはどうだろう
少なくともやばい連中はそこにたくさんいる

1027:132人目の素数さん
17/09/13 20:02:17.52 i1anpb+k.net
>>996
> 少なくともやばい連中はそこにたくさんいる
やばい連中って、どんな連中?

1028:132人目の素数さん
17/09/13 23:06:15.42 i1anpb+k.net
 "; ;ヾ; ;ヾ; ;メヾ "ゞ ;ヾ ;ゞ ;" "ゞ ; ; ; ゞ ;" "ゞ";ヾ ; ヾ ;ゞ; ;ゞ ;ゞ ;" "ゞ        /.             ヽ
 ;" "ゞ ; ; ; ゞ ; ;ヾ ; ; ヾ ;ゞ;ヾ ; ;";ヾ; ;"/" ; ;ヾ ;ヾ; ヾ ; ヾ ;ゞ; ;ゞ ;" ";ゞ ; ;ヾ      l             l
 " ;ヾ ; ;";ヾ; ;"/" ; ;ヾ ;ヾ;ヾ ; ;ヾ ; ; ヾ ;ゞ  " ;ヾ ; ;";ヾゝゝ" ;ヾゞ           ヽ            /
,." ;ヾ ; ;";ヾ; ;"/" ; ;ヾ ;ヾ;ヾ ; ;ヾ ; ; ヾ ;ゞ  " ;ヾ ; ;";ヾゝゝ" ;ヾ ; ; ヾ ;ゞ;        \        /
 ゞヾ ; ;" ; ; ;; ;"iiiiii;;;;;::::: :)_/ヽ,.ゞ:,,ヾゞヾゞ__;::/        `      `        `   ー ─ ' `
   ゞヾゞ;\\iiiiii;;;;::::: :|;:/ヾ; ;ゞ "ゝゞ ; ;`
 " ;゛ ; ;" ; ;ゞ "|iiiiii;;;;::: : |:/ ヾゞ        `         `      ` `
  `      ,|i;iiiiiii;;;;;;::: :| `    `         `     `      ` `   `
        ,|iiii;iiii;;;;:;_ _: :| ___  秋の夜長に不等式    `        `        `,
   `    |iiiiiii;;;;;;((,,,):::|/  ≧ \                    ヾ从//"
    `   |iiiiiiii;;;;ii;;;;;;;;::|::::: (● (● |           `  ゙  `    ヾ'./"
         |iiiiii;iii;;;;i;;:: ::::|ヽ::::......ワ...ノ                 ○     .||.       ,
    `   |iii;;iiiii;::;:;;;;::::::| ( つ且 ~      `              ○○   | |
  , , .,.. ,..M|M|iMii;;ii:i;;i:i;:; ゝ つつ.,.. ,...... ,.... ,,,.,.. ,.... ,,,.,.. ,..,,,,.,...,..,.,| ̄ ̄|,.,..(  ).. ,,,..,,.. ,.... ,,,.,...,.. .. ,.... ,,,.,.. ,.... ,,,

1029:132人目の素数さん
17/09/13 23:06:54.49 i1anpb+k.net
_| ::|_
 ̄| ::|/|           ┌─┐
  | ::|  |     .┌─┐| ∧_∧  いいな、俺たちの誰かが殉職したら・・
/|_|  |┌─┐| ∧_∧|(・ω・` )
  |文|  | | ∧_∧(    )⊂   )
  | ̄|  | | (    )⊂   ) (_Ο Ο :::
  | ::|  | | ⊂   ) (_Ο Ο わかってる、生き延びた奴が
  | ::|/ .|_ (_Ο Ο ::::::::: :::::: 不等式を収集し、証明する !
  | ::| :::::::::::::::::::::::::::::::: 俺たちゃ死んでも仲間だぜ !!

1030:132人目の素数さん
17/09/13 23:07:14.52 i1anpb+k.net
  ┏━━┓
  ┃ Q.E.D. ┃
  ┗━┳━┛
( ゚∀゚) ノ

1031:1001
Over 1000 Thread.net
このスレッドは1000を超えました。
もう書けないので、新しいスレッドを立ててくださいです。。。
life time: 80日 5時間 46分 15秒

1032:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています


最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch