17/08/28 03:43:27.12 Xt3/xWpv.net
(1) a, b, c>0 に対して、(a+b+c)^5 ≧ 81abc(a^2+b^2+c^2)
(2) a, b, c>0 に対して、(a+b+c)^6 ≧ 27(a^2+b^2+c^2)(ab+bc+ca)^2
AOPS:URLリンク(artofproblemsolving.com)
[疑問1]
(1)の証明について、
(a+b+c)^3 - 3(a+b)(b+c)(c+a) = s^3 - 3(st-u) = s(s^2-3t) + 3u >0
∴ (a+b+c)^3 > 3(a+b)(b+c)(c+a) ---(A)
>>687 〔補題196〕 の右側
(a+b)(b+c)(c+a)(a+b+c)^2 ≧ 24abc(a^2+b^2+c^2) ---(B)
(A),(B)から、
(a+b+c)^3 *(a+b+c)^2 > 3(a+b)(b+c)(c+a)*(a+b+c)^2 ≧ 3*24abc(a^2+b^2+c^2)
等号が成り立たなくなるが、実際は例えば、a=b=c のときに等号が成り立つ。
このやり方は、何か間違っているのかな?
A≧B を証明するときに、途中に式を挟んで A≧