不等式への招待 第8章at MATH
不等式への招待 第8章 - 暇つぶし2ch722:132人目の素数さん
17/08/27 01:08:20.58 NetfQ0ow.net
>>679 (1) >>690
・t≧5 のときは明らか。
・3≦t≦5 のとき、
24t -(5-t)(t^3 +9uu)=(t-3)^4 +7(t-3)^3 +9(t-3)^2 +6(t-3)≧0,
5-t ≦ 24t/(t^3 +9uu),
(左辺)-(右辺)= 6 -(5-t)s
 ≧ 6 -24st/(t^3 +9uu)
 = 6(t^3 -24stu +9uu)/(t^3 +9uu)
 = 6u^3・F_1(1/x,1/y,1/z)/(t^3 +9uu)
 ≧ 0,


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch