17/08/24 10:30:59.65 9N+3FV4m.net
>>688
〔補題196〕の略証
チョト難しいのでSchurの拡張で。
bはa、cの間にあるとする。
(左辺)-(右辺)= P(a-b)(a-c)+ Q(b-c)(b-a)+ R(c-a)(c-b)
= P(a-b)^2 +(P-Q+R)(a-b)(b-c)+ R(b-c)^2,
P =(b+c)(b+c-a)^2 + 2(a+b+c)(b-c)^2 ≧ 0,
P-Q+R = 2b{(a+c)^2 -6ac+3bb}= 2b{(a+c-3m)^2+3(bb-mm)}≧ 0,
R =(a+b)(a+b-c)^2 + 2(a+b+c)(a-b)^2 ≧0,
ここに、m = min{a,c}、ac=m(a+c-m)
-----------------------------ーーーーーーーーーーーーーーーーーーー--------------------
[第6章.908]の略証
S = aaa+bbb+ccc, T =(ab)^3+(bc)^3+(ca)^3,
p = aab+bbc+cca, q = abb+bcc+caa, u=abc とおく。
pq = T+uS+3uu ≧ 3u(3ST)^(1/3)≧ 3u√(3Su)より、
(左辺)={(a+b+c)(aa+bb+cc)}^2 =(S+p+q)^2 ≧ 9(Spq)^(2/3)≧ 27Su,
Casphy!-不等式2-177 じゅー