17/08/12 11:28:19.55 rvCA1oPA.net
>>388 (4)
(i) >>432
(ii) OA=OB=OC とし、Oから平面ABCに垂線OHを下し、z軸とする。
A,B,C の天頂角をθとおくと、OH =|OA|・cosθ,etc.
2平面 OAH と OBH のなす角(二面角)を ∠AHB = φとおく。
cos(∠AOB)=(OA・OB)/|OA||OB|=(cosθ)^2 +(sinθ)^2 cosφ ≧ cosφ,
∴ ∠AOB ≦ φ = ∠AHB,
循環的にたす。