不等式への招待 第8章at MATH
不等式への招待 第8章 - 暇つぶし2ch463:132人目の素数さん
17/08/09 17:49:46.39 A2I5YGTu.net
>>449 に付け足し。
a, b, c >0 かつ abc=1 のとき、
(4) [出典不明、元問題は"3乗和≧2乗和"を一般化した]
 自然数nに対して、a^n + b^n + c^n ≧ a^(n-1) + b^(n-1) + c^(n-1)
(5) [出典不明]
 b/a + c/b + a/b ≧ a+b+c ≧ √a + √b + √c
 b/a + c/b + a/b ≧ 1/a + 1/b + 1/c ≧ √a + √b + √c
(6) [2016 東北大]
 a^2 + b^2 + c^2 ≧ 1/a + 1/b + 1/c
(7) [疑問]
 a^n + b^n + c^n ≧ b/a + c/b + a/b をみたす最小の n∈N はあるかな?
(8) [参考までに、これも出典のmemoがなくて困るが…]
 a^3 + b^3 + c^3 + (ab)^3 + (bc)^3 + (ca)^3 ≧ b/a + c/b + a/b
--------------------------------------------------------------
同じ条件の不等式を整理していると、この問題と あの問題は繋がるのでは?
などと気になりはじめると、整理どころではなくなる。そうして未整理の不等式が貯まっていく。
(5)の2つの不等式の中辺の大小は定まらない。(過去スレでやったような希ガス…)
abc=1 に注意して、(a+b+c)-(ab+bc+ca) = (a-1)(b-1)(c-1)
a, b, cと1の大小で、正にも、0にも、負にもなる。


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch